综述

基于纳米多孔薄膜光学干涉的光学传感器

  • 王亚锋 ,
  • 杨倩 ,
  • 苏彬
展开
  • 浙江大学化学系 分析化学研究所 杭州 310058
王亚锋,浙江大学化学系2015级在读硕士生,主要研究方向为纳米多孔膜的光学干涉传感器;杨倩,浙江大学化学系2014级在读博士生,主要研究方向为纳米多孔超薄膜在分子分离和分析方面的应用;苏彬,浙江大学化学系教授,主要从事界面电化学、电化学发光方法和技术、微纳尺度分子分离和分析等方面的基础研究.

收稿日期: 2017-07-04

  网络出版日期: 2017-09-04

基金资助

项目受国家自然科学基金(Nos.21335001,21575126)和浙江省自然科学基金(No.LR14B050001)资助.

Optical Sensors Based on Optical Interference of Nanoporous Film

  • Wang Yafeng ,
  • Yang Qian ,
  • Su Bin
Expand
  • Institute of Analytical Chemistry, Department of Chemistry, Zhejiang University, Hangzhou 310058

Received date: 2017-07-04

  Online published: 2017-09-04

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21335001 and 21575126) and the Zhejiang Provincial Natural Science Foundation (No. LR14B050001).

摘要

光学传感器是一种利用光把介质与目标分子的相互作用转换为光信号的装置.光学干涉是光学传感器中常用的技术,具有无需标记、无破坏性、响应迅速等优点.在光学传感器中光的干涉主要源于从单层薄膜上下表面反射的光或者从多层薄膜各个界面处反射的光.由于纳米多孔薄膜具有较高的比表面积,将其应用于传感器中能够提高传感器的灵敏度、降低检测限.常见的薄膜类型主要有单层、双层、多层(光子晶体)等.本文综述了多孔硅、阳极氧化铝、二氧化钛、金属有机骨架等纳米多孔薄膜材料的光学干涉在传感器中的应用,并对其进行了展望.

本文引用格式

王亚锋 , 杨倩 , 苏彬 . 基于纳米多孔薄膜光学干涉的光学传感器[J]. 化学学报, 2017 , 75(11) : 1071 -1081 . DOI: 10.6023/A17070300

Abstract

Optical sensors are devices that transform the interaction between medium and analyte to optical signal. Optical interference is a technique that has been widely applied in optical sensors, which is label-free, fast and non-invasive. Light reflected from the top and bottom surfaces of single layer film, or each interfaces of multilayer film in optical sensors leads to constructive and destructive fringes of the optical interference pattern. Nanoporous films with large surface-to-volume ratio are beneficial to improve the sensitivity and lower the limit of detection of the sensors, which is typically used in the form of single layer, double layer or multilayer (usually served as photonic crystal). In this article, we introduce and review the applications of nanoporous films of silicon, anodic aluminum oxide, titanium dioxide and metal-organic framework in optical sensors based on the optical interference. A perspective of developments in this research field is also provided.

参考文献

[1] Askim, J. R.; Mahmoudi, M.; Suslick, K. S. Chem. Soc. Rev. 2013, 42, 8649.
[2] Jane, A.; Dronov, R.; Hodges, A.; Voelcker, N. H. Trends Biotechnol. 2009, 27, 230.
[3] Xu, R.; Wang, Y.; Duan, X.; Lu, K.; Micheroni, D.; Hu, A.; Lin, W. J. Am. Chem. Soc. 2016, 138, 2158.
[4] Kang, D.; Sun, S.; Kurnik, M.; Morales, D. P.; Dahlquist, F. W.; Plaxco, K. W. J. Am. Chem. Soc. 2017, Ahead of Print.
[5] Ding, S.-Y.; Dong, M.; Wang, Y.-W.; Chen, Y.-T.; Wang, H.-Z.; Su, C.-Y.; Wang, W. J. Am. Chem. Soc. 2016, 138, 3031.
[6] Li, Y. J.; Lu, Z. Q.; Liu, M.; Xing, G. W. Chin. J. Org. Chem. 2016, 36, 962. (李杨洁, 吕子奇, 刘敏, 邢国文, 有机化学, 2016, 36, 962.)
[7] Huang, Y. Z.; Lei, L. Q.; Zheng, C.; Wei, B.; Zhao, Z. J.; Qin, A. J.; Hu, R. R.; Tang, B. Z. Acta Chim. Sinica 2016, 74, 885. (黄玉章, 雷洛奇, 郑超, 危博, 赵祖金, 秦安军, 胡蓉蓉, 唐本忠, 化学学报, 2016, 74, 885.)
[8] Zhang, L.; Li, Y.; Li, D.-W.; Jing, C.; Chen, X.-Y.; Lv, M.; Huang, Q.; Long, Y.-T.; Willner, I. Angew. Chem., Int. Ed. 2011, 50, 6789.
[9] Shi, L.; Jing, C.; Ma, W.; Li, D.-W.; Halls, J. E.; Marken, F.; Long, Y.-T. Angew. Chem., Int. Ed. 2013, 52, 6011.
[10] Zheng, X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W.; Wen, Y.; He, Y.; Huang, Q.; Long, Y.-T.; Fan, C. Angew. Chem., Int. Ed. 2011, 50, 11994.
[11] Erturk, G.; Ozen, H.; Tumer, M. A.; Mattiasson, B.; Denizli, A. Sens. Actuators B-Chem. 2016, 224, 823.
[12] Masson, J.-F. ACS Sens. 2017, 2, 16.
[13] Aube, A.; Charbonneau, D. M.; Pelletier, J. N.; Masson, J.-F. ACS Sens. 2016, 1, 1358.
[14] Xu, L.; Zhao, S.; Ma, W.; Wu, X.; Li, S.; Kuang, H.; Wang, L.; Xu, C. Adv. Funct. Mater. 2016, 26, 1602.
[15] Qu, L.-L.; Liu, Y.-Y.; He, S.-H.; Chen, J.-Q.; Liang, Y.; Li, H.-T. Biosens. Bioelectron. 2016, 77, 292.
[16] Tang, Y.; Zhen, L.; Liu, J.; Wu, J. Anal. Chem. 2013, 85, 2787.
[17] Tang, Y.; Li, Z.; Luo, Q.; Liu, J.; Wu, J. Biosens. Bioelectron. 2016, 79, 715.
[18] Mcdonagh, C.; Burke, C. S.; Maccraith, B. D. Chem. Rev. 2008, 108, 400.
[19] Gauglitz, G.; Brecht, A.; Kraus, G.; Mahm, W. Sens. Actuators B-Chem. 1993, 11, 21.
[20] Lin, V. S. Y.; Motesharei, K.; Dancil, K.-P. S.; Sailor, M. J.; Ghadiri, M. R. Science 1997, 278, 840.
[21] Pan, S.; Rothberg, L. J. Nano Lett. 2003, 3, 811.
[22] Kim, D.-K.; Kerman, K.; Saito, M.; Sathuluri, R. R.; Endo, T.; Yamamura, S.; Kwon, Y.-S.; Tamiya, E. Anal. Chem. 2007, 79, 1855.
[23] Nemati, M.; Santos, A.; Kumeria, T.; Losic, D. Anal. Chem. 2015, 87, 9016.
[24] Orosco, M. M.; Pacholski, C.; Miskelly, G. M.; Sailor, M. J. Adv. Mater. 2006, 18, 1393.
[25] Letant, S. E.; Sailor, M. J. Adv. Mater. 2000, 12, 355.
[26] Sailor, M. J.; Link, J. R. Chem. Commun. 2005, 1375.
[27] Janshoff, A.; Dancil, K.-P. S.; Steinem, C.; Greiner, D. P.; Lin, V. S. Y.; Gurtner, C.; Motesharei, K.; Sailor, M. J.; Ghadiri, M. R. J. Am. Chem. Soc. 1998, 120, 12108.
[28] Meade, S. O.; Yoon, M. S.; Ahn, K. H.; Sailor, M. J. Adv. Mater. 2004, 16, 1811.
[29] Berger, M. G.; Arens-Fischer, R.; Thönissen, M.; Krüger, M.; Billat, S.; Lüth, H.; Hilbrich, S.; Theiß, W.; Grosse, P. Thin Solid Films 1997, 297, 237.
[30] Sailor, M. J. ACS Nano 2007, 1, 248.
[31] Thompson, C. M.; Ruminski, A. M.; Garcia Sega, A.; Sailor, M. J.; Miskelly, G. M. Langmuir 2011, 27, 8967.
[32] Allongue, P.; Costakieling, V.; Gerischer, H. J. Electrochem. Soc. 1993, 140, 1018.
[33] Dancil, K.-P. S.; Greiner, D. P.; Sailor, M. J. J. Am. Chem. Soc. 1999, 121, 7925.
[34] Gurtner, C.; Wun, A. W.; Sailor, M. J. Angew. Chem., Int. Ed. 1999, 38, 1966.
[35] Bateman, J. E.; Eagling, R. D.; Worrall, D. R.; Horrocks, B. R.; Houlton, A. Angew. Chem., Int. Ed. 1998, 37, 2683.
[36] Robins, E. G.; Stewart, M. P.; Buriak, J. M. Chem. Commun. 1999, 2479.
[37] Buriak, J. M. Chem. Rev. 2002, 102, 1271.
[38] Buriak, J. M.; Allen, M. J. J. Am. Chem. Soc. 1998, 120, 1339.
[39] Schwartz, M. P.; Cunin, F.; Cheung, R. W.; Sailor, M. J. Phys Status Solidi A 2005, 202, 1380.
[40] Hemenway, B. R.; Solgaard, O.; Bloom, D. M. Appl. Phys. Lett. 1989, 55, 349.
[41] Schechter, I.; Benchorin, M.; Kux, A. Anal. Chem. 1995, 67, 3727.
[42] Stievenard, D.; Deresmes, D. Appl. Phys. Lett. 1995, 67, 1570.
[43] Motohashi, A.; Ruike, M.; Kawakami, M.; Aoyagi, H.; Kinoshita, A.; Satou, A. Jpn. J. Appl. Phys. 1996, 35, 4253.
[44] Watanabe, K.; Okada, T.; Choe, I.; Sato, Y. Sens. Actuators B-Chem. 1996, 33, 194.
[45] Pacholski, C.; Sartor, M.; Sailor, M. J.; Cunin, F.; Miskelly, G. M. J. Am. Chem. Soc. 2005, 127, 11636.
[46] Pacholski, C.; Yu, C.; Miskelly, G. M.; Godin, D.; Sailor, M. J. J. Am. Chem. Soc. 2006, 128, 4250.
[47] Pacholski, C.; Perelman, L. A.; Vannieuwenhze, M. S.; Sailor, M. J. Phys. Status Solidi A 2009, 206, 1318.
[48] Kilian, K. A.; Boecking, T.; Gaus, K.; Gal, M.; Gooding, J. J. ACS Nano 2007, 1, 355.
[49] Orosco, M. M.; Pacholski, C.; Sailor, M. J. Nat. Nanotechnol. 2009, 4, 255.
[50] Zhu, Y.; Soeriyadi, A. H.; Parker, S. G.; Reece, P. J.; Gooding, J. J. J. Mater. Chem. B 2014, 2, 3582.
[51] Kilian, K. A.; Lai, L. M. H.; Magenau, A.; Cartland, S.; Bocking, T.; Di, G. N.; Gal, M.; Gaus, K.; Gooding, J. J. Nano Lett. 2009, 9, 2021.
[52] Gupta, B.; Lowe, S. B.; Gooding, J. J.; Mai, K.; Wakefield, D.; Di, G. N.; Gaus, K.; Reece, P. J. Anal. Chem. 2015, 87, 9946.
[53] Kelly, T. L.; Gao, T.; Sailor, M. J. Adv. Mater. 2011, 23, 1776.
[54] Tsang, C. K.; Kelly, T. L.; Sailor, M. J.; Li, Y. Y. ACS Nano 2012, 6, 10546.
[55] Li, J.; Sailor, M. J. Biosens. Bioelectron. 2014, 55, 372.
[56] Schwartz, M. P.; Yu, C.; Alvarez, S. D.; Migliori, B.; Godin, D.; Chao, L.; Sailor, M. J. Phys. Status Solidi A 2007, 204, 1444.
[57] Schwartz, M. P.; Alvarez, S. D.; Sailor, M. J. Anal. Chem. 2007, 79, 327.
[58] Chen, M. Y.; Klunk, M. D.; Diep, V. M.; Sailor, M. J. Adv. Mater. 2011, 23, 4537.
[59] Chen, M. Y.; Sailor, M. J. Anal. Chem. 2011, 83, 7186.
[60] Létant, S. E.; Sailor, M. J. Adv. Mater. 2001, 13, 335.
[61] Ruminski, A. M.; Moore, M. M.; Sailor, M. J. Adv. Funct. Mater. 2008, 18, 3418.
[62] King, B. H.; Ruminski, A. M.; Synder, J. L.; Sailor, M. J. Adv. Mater. 2007, 19, 4530.
[63] Ruminski, A. M.; King, B. H.; Salonen, J.; Snyder, J. L.; Sailor, M. J. Adv. Funct. Mater. 2010, 20, 2874.
[64] Ruminski, A. M.; Barillaro, G.; Chaffin, C.; Sailor, M. J. Adv. Funct. Mater. 2011, 21, 1511.
[65] Lin, H.; Gao, T.; Fantini, J.; Sailor, M. J. Langmuir 2004, 20, 5104.
[66] King, B. H.; Gramada, A.; Link, J. R.; Sailor, M. J. Adv. Mater. 2007, 19, 4044.
[67] Santos, A.; Kumeria, T.; Losic, D. Materials 2014, 7, 4297.
[68] Masuda, H.; Hasegwa, F.; Ono, S. J. Electrochem. Soc. 1997, 144, L127.
[69] Nielsch, K.; Choi, J.; Schwirn, K.; Wehrspohn, R. B.; Gosele, U. Nano Lett. 2002, 2, 677.
[70] Masuda, H.; Fukuda, K. Science 1995, 268, 1466.
[71] Jessensky, O.; Muller, F.; Gosele, U. Appl. Phys. Lett. 1998, 72, 1173.
[72] Garcia-Vergara, S. J.; Habazaki, H.; Skeldon, P.; Thompson, G. E. Nanotechnology 2007, 18.
[73] Law, C. S.; Sylvia, G. M.; Nemati, M.; Yu, J.; Losic, D.; Abell, A. D.; Santos, A. ACS Appl. Mater. Interfaces 2017, 9, 8929.
[74] Kumeria, T.; Santos, A.; Losic, D. ACS Appl. Mater. Interfaces 2013, 5, 11783.
[75] Kumeria, T.; Parkinson, L.; Losic, D. Nanoscale Res. Lett. 2011, 6, 634.
[76] Alvarez, S. D.; Li, C.-P.; Chiang, C. E.; Schuller, I. K.; Sailor, M. J. ACS Nano 2009, 3, 3301.
[77] Krismastuti, F. S. H.; Bayat, H.; Voelcker, N. H.; Schonherr, H. Anal. Chem. 2015, 87, 3856.
[78] Kumeria, T.; Kurkuri, M. D.; Diener, K. R.; Parkinson, L.; Losic, D. Biosens. Bioelectron. 2012, 35, 167.
[79] Macias, G.; Hernandez-Eguia, L. P.; Ferre-Borrull, J.; Pallares, J.; Marsal, L. F. ACS Appl. Mater. Interfaces 2013, 5, 8093.
[80] Santos, A. J. Mater. Chem. C 2017, Ahead of Print.
[81] Shang, G. L.; Fei, G. T.; Zhang, Y.; Yan, P.; Xu, S. H.; Zhang, L. D. J. Mater. Chem. C 2013, 1, 5285.
[82] Shang, G.; Fei, G.; Li, Y.; Zhang, L. Nano Res. 2016, 9, 703.
[83] Kumeria, T.; Rahman, M. M.; Santos, A.; Ferre-Borrull, J.; Marsal, L. F.; Losic, D. Anal. Chem. 2014, 86, 1837.
[84] Kumeria, T.; Rahman, M. M.; Santos, A.; Ferre-Borrull, J.; Marsal, L. F.; Losic, D. ACS Appl. Mater. Interfaces 2014, 6, 12971.
[85] Kumeria, T.; Santos, A.; Rahman, M. M.; Ferre-Borrull, J.; Marsal, L. F.; Losic, D. ACS Photonics 2014, 1, 1298.
[86] Chen, Y.; Santos, A.; Wang, Y.; Kumeria, T.; Wang, C.; Li, J.; Losic, D. Nanoscale 2015, 7, 7770.
[87] Chen, Y.; Santos, A.; Wang, Y.; Kumeria, T.; Li, J.; Wang, C.; Losic, D. ACS Appl. Mater. Interfaces 2015, 7, 19816.
[88] Santos, A.; Yoo, J. H.; Rohatgi, C. V.; Kumeria, T.; Wang, Y.; Losic, D. Nanoscale 2016, 8, 1360.
[89] Nemati, M.; Santos, A.; Law, C. S.; Losic, D. Anal. Chem. 2016, 88, 5971.
[90] Law, C. S.; Santos, A.; Nemati, M.; Losic, D. ACS Appl. Mater. Interfaces 2016, 8, 13542.
[91] Mun, K.-S.; Alvarez, S. D.; Choi, W.-Y.; Sailor, M. J. ACS Nano 2010, 4, 2070.
[92] Gaya, U. I.; Abdullah, A. H. J. Photochem. Photobiol., C 2008, 9, 1.
[93] Fujishima, A.; Zhang, X.; Tryk, D. A. Surf. Sci. Rep. 2008, 63, 515.
[94] Fujishima, A.; Honda, K. Nature 1972, 238, 37.
[95] Ghicov, A.; Schmuki, P. Chem. Commun. 2009, 2791.
[96] Bai, J.; Zhou, B. Chem. Rev. 2014, 114, 10131.
[97] Song, Y.-Y.; Schmuki, P. Electrochem. Commun. 2010, 12, 579.
[98] Liang, F.; Kelly, T. L.; Luo, L.-B.; Li, H.; Sailor, M. J.; Li, Y. Y. ACS Appl. Mater. Interfaces 2012, 4, 4177.
[99] Wang, Z.; Cohen, S. M. Chem. Soc. Rev. 2009, 38, 1315.
[100] Yang, T.; Cui, Y. N.; Chen, H. Y.; Li, W. H. Acta Chim. Sinica 2017, 75, 339. (杨涛, 崔亚男, 陈怀银, 李伟华, 化学学报, 2017, 75, 339.)
[101] Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112, 1105.
[102] Lu, G.; Hupp, J. T. J. Am. Chem. Soc. 2010, 132, 7832.

文章导航

/