综述

锂离子电池高电压和耐燃电解液研究进展

  • 夏兰 ,
  • 余林颇 ,
  • 胡笛 ,
  • 陈政
展开
  • 宁波诺丁汉大学 理工学院 宁波 315100
夏兰,宁波诺丁汉大学副研究员.2013年在武汉大学化学与分子科学学院获得博士学位,导师艾新平教授.主要研究领域为高性能电解液、锂离子电池安全性技术.作为负责人主持国家自然科学基金青年基金、中国博士后科学基金面上(一等)资助、宁波市自然科学基金,作为合作单位负责人主持省属科研院所专项项目1项;陈政(George Zheng Chen),英国诺丁汉大学化学与环境工程系(英、中校区)正教授、可持续能源技术研究中心主任.1992年在伦敦大学帝国理工医学院获博士学位.2000年应聘于教育部长江学者奖励计划特聘教授.2002年获得自然科学基金会杰出青年基金.2015年入选浙江省千人计划.长期从事电化学基础和应用研究,涉及领域包括材料、能源和环境.迄今,陈政教授已在Nature,Angew. Chem. Int. Edi.,Adv. Mater.,Energy Environ. Sci.,Chem. Commun.,J. Am. Chem. Soc.等有同行评议的学术期刊上发表原始研究和综述论文190余篇;获准国内外专利19项;发表学术会议报告200余篇;研究论文的总SCI引用次数超过8000次,其中有19篇论文的单篇SCI引用次数超过100次.据SCI和Google Scholar统计,陈政的h-index分别为52和60.

收稿日期: 2017-06-28

  网络出版日期: 2017-09-06

基金资助

项目受国家自然科学基金(No.21503246)、宁波市科技项目(“3315计划”、No.2014A35001-1),宁波市自然科学基金(Nos.2017A610022,2016A610114,2016A610115)和浙江省科技厅项目(Nos.2016C31023,2017C31104)资助.

Research Progress and Perspectives on High Voltage, Flame Retardant Electrolytes for Lithium-Ion Batteries

  • Xia Lan ,
  • Yu Linpo ,
  • Hu Di ,
  • Chen Z. George
Expand
  • Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100

Received date: 2017-06-28

  Online published: 2017-09-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21503246), the Ningbo Municipal Government (3315 Plan and the IAMET Special Fund, No. 2014A35001-1), Ningbo Natural Science Foundation Programme (Nos. 2017A610022, 2016A610114, 2016A610115), and the Project of Science and Technology Department of Zhejiang Province (Nos. 2016C31023、No. 2017C31104).

摘要

电解液作为锂离子电池的重要组成部分,起着传输离子的作用,电解液的性质对电池的容量、循环性能及安全性能等影响巨大.近年来,随着高电压、高能量密度锂离子电池的开发应用,现有常规碳酸酯电解液存在正极稳定性差、闪点低、易燃烧等问题.因此,发展高电压耐燃电解液是应用高电压高容量正极材料、发展高电压高容量高安全性锂离子电池的迫切需要.主要综述了高电压电解液、耐燃性电解液及兼具抗氧化性和耐燃性的高浓度电解液的研究进展和现状.在此基础上,对锂离子电池新型电解液的发展方向进行了展望.

本文引用格式

夏兰 , 余林颇 , 胡笛 , 陈政 . 锂离子电池高电压和耐燃电解液研究进展[J]. 化学学报, 2017 , 75(12) : 1183 -1195 . DOI: 10.6023/A17060284

Abstract

The electrolyte is an indispensable constituent in lithium ion batteries, and its role conducts electricity by means of the transportation of charge carries between the pair of electrodes. Its properties directly affect the energy density, cycle life and safety of the battery. However, there are two major challenges to using carbonate-based electrolytes in recent lithium ion batteries (LIBs) to further increase the energy density of the devices without compromising the safety. One is that carbonate-based electrolytes are not sufficiently stable at the positive electrode, and the other is their relatively high flammability. Therefore, developing high voltage and flame retardant electrolytes for LIBs is highly desired. Herein, we review the recent progress and challenges in new electrolytes, focusing on high-voltage electrolytes, flame retardant electrolytes and highly concentrated electrolytes. Among the reported electrolytes, highly concentrated electrolytes are worth a special attention, showing various unusual functionalities, for example, high oxidative stability, low volatility, high reductive stability, and non-corrosive to Al. These special properties are totally different from that of the conventional 1 mol•L-1 LiPF6/EC-based electrolytes, which are result from solution structures. A discussion is also provided in this review on the prospects of further development of new electrolytes for LIBs.

参考文献

[1] Aurbach, D.; Talyosef, Y.; Markovsky, B.; Markevich, E.; Zinigrad, E.; Asraf, L.; Gnanaraj, J. S.; Kim, H. J. Electrochim. Acta 2004, 50, 247.
[2] Markovsky, B.; Amalraj, F.; Gottlieb, H. E.; Gofer, Y.; Martha, S. K.; Aurbach, D. J. Electrochem. Soc. 2010, 157, A423.
[3] Erickson, E. M.; Markevich, E.; Salitra, G.; Sharon, D.; Hirshberg, D.; de la Llave, E.; Shterenberg, I.; Rozenman, A.; Frimer, A.; Aurbach, D. J. Electrochem. Soc. 2015, 162, A2424.
[4] Xu, K. Chem. Rev. 2004, 104, 4303.
[5] Hu, M.; Pang, X.; Zhou, Z. J. Power Sources 2013, 237, 229.
[6] Xu, K. Chem. Rev. 2014, 114, 11503.
[7] Wan, Y.; Zheng, Q.-J.; Lin, D.-M. Acta Chim. Sinica 2014, 72, 537. (万洋, 郑荞佶, 赁敦敏, 化学学报, 2014, 72, 537.)
[8] Xing, L.; Li, W.; Wang, C.; Gu, F.; Xu, M.; Tan, C.; Yi, J. J. Phys. Chem. B 2009, 113, 16596.
[9] Yang, L.; Ravdel, B.; Lucht, B. L. Electrochem. Solid-State Lett. 2010, 13, A95.
[10] Kim, J.-H.; Pieczonka, N. P. W.; Li, Z.; Wu, Y.; Harris, S.; Powell, B. R. Electrochim. Acta 2013, 90, 556.
[11] Pieczonka, N. P. W.; Liu, Z.; Lu, P.; Olson, K. L.; Moote, J.; Powell, B. R.; Kim, J.-H. J. Phys. Chem. C 2013, 117, 15947.
[12] Yao, X. L.; Xie, S.; Chen, C. H.; Wang, Q. S.; Sun, J. H.; Li, Y. L.; Lu, S. X. J. Power Sources 2005, 144, 170.
[13] Zhang, H. P.; Xia, Q.; Wang, B.; Yang, L. C.; Wu, Y. P.; Sun, D. L.; Gan, C. L.; Luo, H. J.; Bebeda, A. W.; Ree, T. v. Electrochem. Commun. 2009, 11, 526.
[14] Hyung, Y. E.; Vissers, D. R.; Amine, K. J. Power Sources 2003, 119-121, 383.
[15] Mandal, B. K.; Padhi, A. K.; Shi, Z.; Chakraborty, S.; Filler, R. J. Power Sources 2006, 161, 1341.
[16] Shim, E.-G.; Nam, T.-H.; Kim, J.-G.; Kim, H.-S.; Moon, S.-I. J. Power Sources 2007, 172, 901.
[17] Ren, Y.; Wen, Y.; Lian, F.; Qiu, W.-H. Chemistry 2015, 78, 107. (任岩, 文焱, 连芳, 丑卫华, 化学通报, 2015, 78, 107.)
[18] Dalavi, S.; Xu, M.; Knight, B.; Lucht, B. L. Electrochem. Solid-State Lett. 2011, 15, A28.
[19] Yang, L.; Markmaitree, T.; Lucht, B. L. J. Power Sources 2011, 196, 2251.
[20] Hu, M.; Wei, J.; Xing, L.; Zhou, Z. J. Appl. Electrochem. 2012, 42, 291.
[21] Li, Z. D.; Zhang, Y. C.; Xiang, H. F.; Ma, X. H.; Yuan, Q. F.; Wang, Q. S.; Chen, C. H. J. Power Sources 2013, 240, 471.
[22] von Cresce, A.; Xu, K. J. Electrochem. Soc. 2011, 158, A337.
[23] von Cresce, A.; Xu, K. ECS Transactions 2012, 41, 17.
[24] Rong, H.; Xu, M.; Xing, L.; Li, W. J. Power Sources 2014, 261, 148.
[25] Song, Y.-M.; Han, J.-G.; Park, S.; Lee, K. T.; Choi, N.-S. J. Mater. Chem. A 2014, 2, 9506.
[26] Yan, G.; Li, X.; Wang, Z.; Guo, H.; Wang, C. J. Power Sources 2014, 248, 1306.
[27] Zhang, J.; Wang, J.; Yang, J.; NuLi, Y. Electrochim. Acta 2014, 117, 99.
[28] Yan, G.; Li, X.; Wang, Z.; Guo, H.; Xiong, X. J. Power Sources 2014, 263, 231.
[29] Felix, F.; Cheng, J.-H.; Hy, S.; Rick, J.; Wang, F. M.; Hwang, B.-J. J. Phys. Chem. C 2013, 117(44), 22619.
[30] Lee, H.; Choi, S.; Choi, S.; Kim, H.-J.; Choi, Y.; Yoon, S.; Cho, J.-J. Electrochem. Commun. 2007, 9, 801.
[31] Tarnopolskiy, V.; Kalhoff, J.; Nádherná, M.; Bresser, D.; Picard, L.; Fabre, F.; Rey, M.; Passerini, S. J. Power Sources 2013, 236, 39.
[32] Bouayad, H.; Wang, Z.; Dupré, N.; Dedryvère, R.; Foix, D.; Franger, S.; Martin, J.-F.; Boutafa, L.; Patoux, S.; Gonbeau, D.; Guyomard, D. J. Phys. Chem. C 2014, 118(9), 4634.
[33] Pieczonka, N. P. W.; Yang, L.; Balogh, M. P.; Powell, B. R.; Chemelewski, K. R.; Manthiram, A.; Krachkovskiy, S. A.; Goward, G. R.; Liu, M.; Kim, J.-H. J. Phys. Chem. C 2013, 117(44), 22603.
[34] Xu, K.; Zhang, S.; Jow, T. R. Electrochem. Solid-State Lett. 2003, 6, A117.
[35] Wu, Q.; Lu, W.; Miranda, M.; Honaker-Schroeder, T. K.; Lakhsassi, K. Y.; Dees, D. Electrochem. Commun. 2012, 24, 78.
[36] Xu, M.; Zhou, L.; Dong, Y.; Chen, Y.; Demeaux, J.; MacIntosh, A. D.; Garsuch, A.; Lucht, B. L. Energy Environ. Sci. 2016, 9, 1308.
[37] Ue, M.; Ida, K.; Mori, S. J. Electrochem. Soc. 1994, 141, 2989.
[38] Ue, M.; Takeda, M.; Takehara, M.; Mori, S. J. Electrochem. Soc. 1997, 144, 2684.
[39] Nanini-Maury, E.; Swiatowska, J.; Chagnes, A.; Zanna, S.; Tran-Van, P.; Marcus, P.; Cassir, M. Electrochim. Acta 2014, 115, 223.
[40] Nagahama, M.; Hasegawa, N.; Okada, S. J. Electrochem. Soc. 2010, 157, A748.
[41] Kavan L. Chem. Rev. 1997, 97, 3061.
[42] Abu-Lebdeh, Y.; Davidson, I. J. Electrochem. Soc. 2009, 156, A60.
[43] Abu-Lebdeh, Y.; Davidson, I. J. Power Sources 2009, 189, 576.
[44] Gmitter, A. J.; Plitz, I.; Amatucci, G. G. J. Electrochem. Soc. 2012, 159, A370.
[45] Xu, K.; Angell, C. A. J. Electrochem. Soc. 1998, 145, L70.
[46] Sun, X.-G.; Angell, C. A. Solid State Ionics 2004, 175, 257.
[47] Sun, X.-G.; Angell, C. A. Electrochem. Commun. 2005, 7, 261.
[48] Sun, X.; Angell, C. A. Meeting Abstracts 2008, MA2008-01, 162.
[49] Watanabe, Y.; Kinoshita, S.-i.; Wada, S.; Hoshino, K.; Morimoto, H.; Tobishima, S.-i. J. Power Sources 2008, 179, 770.
[50] Sun, X.; Angell, C. A. Electrochem. Commun. 2009, 11, 1418.
[51] Mao, L.; Li, B.; Cui, X.; Zhao, Y.; Xu, X.; Shi, X.; Li, S.; Li, F. Electrochim. Acta 2012, 79, 197.
[52] Li, C.; Zhao, Y.; Zhang, H.; Liu, J.; Jing, J.; Cui, X.; Li, S. Electrochim. Acta 2013, 104, 134.
[53] Wu, F.; Xiang, J.; Li, L.; Chen, J.; Tan, G.; Chen, R. J. Power Sources 2012, 202, 322.
[54] Wu, F.; Zhu, Q.; Li, L.; Chen, R.; Chen, S. J. Mater. Chem. A 2013, 1, 3659.
[55] Abouimrane, A.; Belharouak, I.; Amine, K. Electrochem. Commun. 2009, 11, 1073.
[56] Xing, L.; Vatamanu, J.; Borodin, O.; Smith, G. D.; Bedrov, D. J. J. Phys. Chem. C 2012, 116, 23871.
[57] Sakaebe, H.; Matsumoto, H. Electrochem. Commun. 2003, 5, 594.
[58] Matsumoto, H.; Sakaebe, H.; Tatsumi, K. J. Power Sources 2005, 146, 45.
[59] Galiński, M.; Lewandowski, A.; Stepniak, I. Electrochim. Acta 2006, 51, 5567.
[60] Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8, 621.
[61] Seki, S.; Serizawa, N.; Takei, K.; Miyashiro, H.; Watanabe, M. Meeting Abstracts 2011, MA2011-02, 1277.
[62] Le, M.-L.-P.; Alloin, F.; Strobel, P.; Leprêtre, J.-C.; Cointeaux, L.; Valle, C. Ionics 2012, 18, 817.
[63] Dokko, K.; Tachikawaa, N.; Yamauchia, K.; Tsuchiyaa, M.; Yamazakia, A.; Takashimaa, E.; Parka, J.-W.; Uenoa, K.; Sekib, S.; Serizawab, N.; Watanabea, M. J. Electrochem. Soc. 2013, 160, A1304.
[64] Borgel, V.; Markevich, E.; Aurbach, D.; Semrau, G.; Schmidt, M. J. Power Sources 2009, 189, 331.
[65] Xiang, J.; Wu, F.; Chen, R.; Li, L.; Yu, H. J. Power Sources 2013, 233, 115.
[66] Mun, J.; Yim, T.; Park, K.; Ryu, J. H.; Kim, Y. G.; Oh, S. M. J. Electrochem. Soc. 2011, 158, A453.
[67] Kitagawa, T.; Azuma, K.; Koh, M.; Yamauchi, A.; Kagawa, M.; Sakata, H.; Miyawaki, H.; Nakazono, A.; Arima, H.; Yamagata, M. Electrochemistry 2010, 78, 345.
[68] Hu, L.; Zhang, Z.; Amine, K. Electrochem. Commun. 2013, 35, 76.
[69] Markevich, E.; Salitra, G.; Fridman, K.; Sharabi, R.; Gershinsky, G.; Garsuch, A.; Semrau, G.; Schmidt, M. A.; Aurbach, D. Langmuir 2014, 30, 7414.
[70] Zhang, Z.; Hu, L.; Wu, H.; Weng, W.; Koh, M.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Energy Environ. Sci. 2013, 6, 1806.
[71] Achiha, T.; Nakajima, T.; Ohzawa, Y.; Koh, M.; Yamauchi, A.; Kagawa, M.; Aoyama, H. J. Electrochem. Soc. 2010, 157, A707.
[72] Xia, L.; Xia, Y.; Wang, C.; Hu, H.; Lee, S.; Yu, Q.; Chen, H.; Liu, Z. ChemElectroChem 2015, 2, 1707.
[73] Yan, G.; Li, X.; Wang, Z.; Guo, H.; Wang, J. J. Phys. Chem. C 2014, 118, 6586.
[74] Chen, Z.; Qin, Y.; Ren, Y.; Lu, W.; Orendorff, C. E.; Roth, P.; Amine, K. Energy Environ. Sci. 2011, 4, 4023.
[75] Wong, D. H. C.; Thelen, J. L.; Fu, Y.; Devaux, D.; Pandya, A. A.; Battaglia, V. S.; Balsara, N. P.; Desimone, J. M. PNAS 2014, 111, 3327.
[76] Arai, J. J. Electrochem. Soc. 2003, 150, A219.
[77] Naoi, K.; Iwama, E.; Ogihara, N.; Nakamura, Y.; Segawa, H.; Ino, Y. J. Electrochem. Soc. 2009, 156, A272.
[78] Naoi, K.; Iwama, E.; Honda, Y.; Shimodate, F. J. Electrochem. Soc. 2010, 157, A190.
[79] Huang, Q.; Yan, M.-M.; Jiang, Z.-Y. Acta Chim. Sinica 2008, 66, 1. (黄倩, 严曼明, 江志裕, 化学学报, 2008, 66, 1.)
[80] Xia, L. Ph. D. Dissertation, Wuhan University, Wuhan, 2013. (夏兰, 博士论文, 武汉大学, 武汉, 2013.)
[81] Choi, J.-A.; Sun, Y.-K.; Shim, E.-G.; Scrosati, B.; Kim, D.-W. Electrochim. Acta 2011, 56, 10179.
[82] Pan, X.-R.; Lian, F.; Guan, H.-Y.; He, Y. Chemistry 2014, 77, 752. (潘笑容, 连芳, 关红艳, 何逸, 化学通报, 2014, 77, 752.)
[83] Lombardo, L.; Brutti, S.; Navarra, M. A.; Panero, S.; Reale, P. J. Power Sources 2013, 227, 8.
[84] Wang, X.; Yasukawa, E.; Kasuya, S. J. Electrochem. Soc. 2001, 148, A1058.
[85] Feng, J. K.; Ai, X. P.; Cao, Y. L.; Yang, H. X. J. Power Sources 2008, 177, 194.
[86] Jia, H.; Wang, J. L.; Lin, F. J.; Monroe, C. W.; Yang, J.; NuLi, Y. Chem. Commun. 2014, 50, 7011.
[87] Xu, K.; Ding, M. S.; Zhang, S. S.; Allen, J. L.; Jow, T. R. J. Electrochem. Soc. 2002, 149, A622
[88] Wu, B. B.; Pei, F.; Wu, Y.; Mao, R. J.; Ai, X. P.; Yang, H. X.; Cao, Y. L. J. Power Source 2013, 227, 106.
[89] Zeng, Z. Q.; Jiang, X. Y.; Wu, B. B.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Electrochim. Acta 2014, 129, 300.
[90] Xu, K.; Ding, M. S.; Zhang, S.; Allen, J. L.; Jow, T. R. J. Electrochem. Soc. 2003, 150, A161.
[91] Xu, K.; Zhang, S. S.; Allen, J. L.; Jow, T. R. J. Electrochem. Soc. 2003, 150, A170.
[92] Tsujikawa, T.; Yabuta, K.; Matsushita, T.; Matsushima, T.; Hayashi, K.; Arakawa, M. J. Power Sources 2009, 189, 429.
[93] Zhang, S. S.; Xu, K.; Jow, T. R. J. Power Source 2003, 113, 166.
[94] Xiang, H. F.; Xu, H. Y.; Wang, Z. Z.; Chen, C. H. J. Power Source 2007, 173, 562.
[95] Xia, L.; Xia, Y.-G.; Liu, Z.-P. J. Power Sources 2015, 278, 190.
[96] Allen, C. W.; Bedell, S.; Pennington, W. T.; Cordes, A. W. Inorg. Chem. 1985, 24, 1653.
[97] Feng, J. K.; An, Y. L.; Ci, L. J.; Xiong, S. L. J. Mater. Chem. A 2015, 3, 14539.
[98] Zhou, D.; Li, W.; Tan, C.; Zuo, X.; Huang, Y. J. Power Sources 2008, 184, 589.
[99] Arai, J.; Katayama, H.; Akahoshi, H. J. Electrochem. Soc. 2002, 149, A217.
[100] Arai, J. J. Appl. Electrochem. 2002, 32, 1071.
[101] Arai, J. J. Electrochem. Soc. 2003, 150, A219.
[102] Naoi, K.; Iwama, E.; Ogihara, N.; Nakamura, Y.; Segawa, H.; Ino, Y. J. Electrochem. Soc. 2009, 156, A272.
[103] Naoi, K.; Iwama, E.; Honda, Y.; Shimodate, F. J. Electrochem. Soc. 2010, 157, A190.
[104] Kim, G.-T.; Jeong, S. S.; Joost, M.; Rocca, E.; Winter, M.; Passerini, S.; Balducci, A. J. Power Sources 2011, 196, 2187.
[105] Kim, G.-T.; Jeong, S. S.; Xue, M.-Z.; Balducci, A.; Winter, M.; Passerini, S.; Alessandrini, F.; Appetecchi, G. B. J. Power Sources 2012, 199, 239.
[106] Appetecchi, G. B.; Scaccia, S.; Tizzani, C.; Alessandrini, F.; Passerini, S. J. Electrochem. Soc. 2006, 153, A1685.
[107] Kalhoff, J.; Kim, G.-T.; Passerini, S.; Appetecchi, G. B. J. Power Energy Eng. 2016, 4, 9.
[108] Yang, B.; Li, C.; Zhou, J.; Liu, J.; Zhang, Q. Electrochim. Acta 2014, 148, 39.
[109] Lombardo, L.; Brutti, S.; Navarra, M. A.; Panero, S.; Reale, P. J. Power Sources 2013, 227, 8.
[110] Wilken, S.; Xiong, S.; Scheers, J.; Jacobsson, P.; Johansson, P. J. Power Sources 2015, 275, 935.
[111] Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A.; Protti, S.; Lazzaroni, S.; Fagnoni, M.; Albini, A. J. Power Sources 2009, 194, 45.
[112] Chen, Z.; Xi, H.; Lim, K. H.; Lee, J. Angew. Chem. Int. Ed. 2013, 52, 13392.
[113] Quinzeni, I.; Ferrari, S.; Quartarone, E.; Tomasi, C.; Fagnoni, M.; Mustarelli, P. J. Power Sources 2013, 237, 204.
[114] Kim, H.-T.; Kang, J.; Mun, J.; Oh, S. M.; Yim, T.; Kim, Y. G. ACS Sustainable Chem. Eng. 2016, 4, 497.
[115] Yamada, Y.; Yamada, A. J. Electrochem. Soc. 2015, 162, A2406.
[116] Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. J. Am. Chem. Soc. 2014, 136, 5039.
[117] Doi, T.; Masuhara, R.; Hashinokuchi, M.; Shimizu, Y.; Inaba, M. Electrochim. Acta 2016, 209, 219.
[118] Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Nat. Commun. 2016, 7, 12032.
[119] Matsumoto, K.; Inoue, K.; Nakahara, K.; Yuge, R.; Noguchi, T.; Utsugi, K. J. Power Sources 2013, 231, 234.
[120] McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A. Energy Environ. Sci. 2014, 7, 416.
[121] Yamada, Y.; Chiang, C. H.; Sodeyama, K.; Wang, J.; Tateyama, Y.; Yamada, A. ChemElectroChem 2015, 2, 1687.
[122] Besenhard, J. O. Carbon 1976, 14, 111.
[123] Besenhard, J. O.; Winter, M.; Yang, J.; Biberacher, W. J. Power Sources 1995, 54, 228.
[124] Arakawa, M.; Yamaki, J. J. Electroanal. Chem. 1987, 219, 273.
[125] Abe, T.; Kawabata, N.; Mizutani, Y.; Inaba, M.; Ogumi, Z. J. Electrochem. Soc. 2003, 150, A257.
[126] Yamada, Y.; Yaegashi, M.; Abe, T.; Yamada, A. Chem. Commun. 2013, 49, 11194.
[127] Sodeyama, K.; Yamada, Y.; Aikawa, K.; Yamada, A.; Tateyama, Y. J. Phys. Chem. C 2014, 118, 14091.
[128] Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. Nat. Commun. 2013, 4, 1481.
[129] Qian, J.; Henderson, W. A.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Borodin, O.; Zhang, J. G. Nat. Commun. 2015, 6, 6362.
[130] Ma, Q.; Fang, Z.; Liu, P.; Ma, J.; Qi, X.; Feng, W.; Nie, J.; Hu, Y.-S.; Li, H.; Huang, X.; Chen, L.; Zhou, Z. ChemElectroChem 2016, 3, 531.

文章导航

/