纳米等离子体生物传感及成像
收稿日期: 2017-06-30
网络出版日期: 2017-09-06
基金资助
项目受国家重点基础研究发展计划(Nos.2013CB932803,2013CB933800)、国家重点研发计划(Nos.2016YFA0201200,2016YFA0400900)及国家自然科学基金委(Nos.21675166,21227804)资助.
Nanoplasmonic Biological Sensing and Imaging
Received date: 2017-06-30
Online published: 2017-09-06
Supported by
Project supported by the National Basic Research Program of China (Nos. 2013CB932803, 2013CB933800), the National Key R&D Program of China (Nos. 2016YFA0201200, 2016YFA0400900) and the National Natural Science Foundation of China (Nos. 21675166, 21227804).
贵金属纳米材料具有显著的局域表面等离子体共振(LSPR)效应,可有效地将共振光子限域在金属表面.随着多种形貌贵金属纳米材料的可控合成及其功能化表面化学技术的日臻成熟,贵金属纳米材料已被广泛应用于生物标记、传感成像、分析分离及生物医学领域.从贵金属纳米等离子体材料的性质出发,综述局域表面等离子体共振材料在传感及细胞成像中的最新进展,并对基于局域表面等离子体共振材料的纳米光子学传感器未来发展前景做出展望.
关键词: 纳米光子学; 贵金属纳米材料; 局域表面等离子体共振; 传感; 生物成像
苏莹莹 , 彭天欢 , 邢菲菲 , 李迪 , 樊春海 . 纳米等离子体生物传感及成像[J]. 化学学报, 2017 , 75(11) : 1036 -1046 . DOI: 10.6023/A17060289
The localized surface plasmon resonance of metal nanoparticles is the collective oscillation of electrons on particle surface. The localized electromagnetic interaction brings a series of novel functions and applications. Plasmonic nanomaterials have been the significant part of nanophotonics, since its' localized surface plasmon resonance (LSPR) can focus incident phonons on the nanoscale surface. The unique plasmonic property is highly sensitive to their size, shape, coupling between particles as well as local dielectric environment. These properties can be utilized for the development of new biosensing and bioimaging applications. To date, many LSPR sensing strategies have been developed with outstanding measurement capabilities, enabling detection down to the single-molecule level, including LSPR-based sensing, surface-enhanced Raman scattering, metal-enhanced fluorescence, dark-field light-scattering, metal-mediated fluorescence resonance energy transfer. Moreover, the unique optical stability of plasmonic nanoparticles enables them as ideal probes in cellular imaging. Here, recent examples on application of plasmonic nanostructures in sensing and bioimaging are summarized, and perspectives are provided as well.
[1] Kawata, S.; Ohtsu, M.; Irie, M. Nano-Optics 2002, 84.
[2] Gramotnev, D. K.; Bozhevolnyi, S. I. Nat. Photonics 2010, 4, 83.
[3] Quidant, R.; Kreuzer, M. Nat. Nanotechnol. 2010, 5, 762.
[4] Ozbay, E. Science 2006, 311, 189.
[5] Schuller, J. A.; Barnard, E. S.; Cai, W.; Jun, Y. C.; White, J. S.; Brongersma, M. L. Nat. Mater. 2010, 9, 193.
[6] (a) Mayer, K. M.; Hafner, J. H. Chem. Rev. 2011, 111, 3828;
(b) Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Nat. Mater. 2008, 7, 442;
(c) Jung, L. S.; Chinowsky, T. M.; Mar, M. N.; Yee, S. S.; Campbell, C. T. Langmuir 1998, 14, 5636;
(d) Li, Y.; Jing, C.; Zhang, L.; Long, Y. T. Cheminform 2012, 43, doi:10. 1002/chin. 201218277;
(e) Peng, H.; Tang, H.; Jiang, J. Sci. Chin. Chem. 2016, 59, 783;
(f) Xu, H.; Li, Q.; Wang, L.; He, Y.; Shi, J.; Tang, B.; Fan, C. Chem. Soc. Rev. 2014, 43, 2650.;
(g) Lu, N,; Gao, A.; Zhou, H.; Wang, Y.; Yang, X.; Wang, Y.; Li, T. Chin. J. Chem. 2016, 34, 308.
[7] (a) G, M. Ann. Phys. Berlin 1908, 25, 377;
(b) Bohren, C. F.; Huffman, D. R. Opt. Laser Technol. 1998, 31, 328.
[8] Gans, R. Ann. Phys. Berlin 1912, 342, 881.
[9] Kelly, K. L.; Coronado, E.; Lin, L. Z.; Schatz, G. C. Cheminform 2003, 34, 668.
[10] Choi, Y.; Park, Y.; Kang, T.; Lee, L. P. Nat. Nanotechnol. 2009, 4, 742.
[11] Liu, N.; Tang, M. L.; Hentschel, M.; Giessen, H.; Alivisatos, A. P. Nat. Mater. 2011, 10, 631.
[12] Xu, Y.; Li, K.; Qin, W.; Zhu, B.; Zhou, Z.; Shi, J.; Wang, K.; Hu, J.; Fan, C.; Li, D. Anal. Chem. 2015, 87, 1968.
[13] Qin, W. W.; Wang, S. P.; Li, J.; Peng, T. H.; Xu, Y.; Wang, K.; Shi, J. Y.; Fan, C. H.; Li, D. Nanoscale 2015, 7, 15070.
[14] Li, K.; Qin, W.; Li, F.; Zhao, X.; Jiang, B.; Wang, K.; Deng, S.; Fan, C.; Li, D. Angew. Chem., Int. Ed. 2013, 52, 11542.
[15] Peng, T.; Qin, W.; Wang, K.; Shi, J.; Fan, C.; Li, D. Anal. Chem. 2015, 87, 9403.
[16] Jain, P. K.; Huang, W.; El-Sayed, M. A. Nano Lett. 2007, 7, 2080.
[17] Prodan, E.; Radloff, C.; Halas, N. J.; Nordlander, P. Science 2003, 302, 419.
[18] Lee, S. E.; Alivisatos, P.; Bissell, M. J.; Chen, Q.; Bhat, R.; Petkiewicz, S.; Smith, J.; Correia, A.; Ferry, V. Nano Lett. 2015, 15.
[19] Jun, Y. W.; Sheikholeslami, S.; Hostetter, D. R.; Tajon, C.; Craik, C. S.; Alivisatos, A. P. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 17735.
[20] Kim, S.; Park, J. E.; Hwang, W.; Seo, J.; Lee, Y.; Hwang, J.; Nam, J. J. Am. Chem. Soc. 2017, 139, 3558.
[21] (a) Liu, D.; Chen, W.; Wei, J.; Li, X.; Wang, Z.; Jiang, X. Anal. Chem. 2012, 84, 4185;
(b) Chen, G.; Chen, W.; Yen, Y.; Wang, C.; Chang, H.; Chen, C. Anal. Chem. 2014, 86, 6843;
(c) Sener, G.; Uzun, L.; Denizli, A. Anal. Chem. 2014, 86, 514;
(d) Soh, J. H.; Lin, Y.; Rana, S.; Ying, J. Y.; Stevens, M. M. Anal. Chem. 2015, 87, 7644.
[22] Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 7238.
[23] de la Rica R.; Stevens, M. M. Nat. Nanotechnol. 2012, 7, 821.
[24] Novo, C.; Funston, A. M.; Mulvaney, P. Nat. Nanotechnol. 2008, 3, 598.
[25] Li, K.; Wang, K.; Qin, W.; Deng, S.; Li, D.; Shi, J.; Huang, Q.; Fan, C. J. Am. Chem. Soc. 2015, 137, 4292.
[26] Porter, M. D.; Lipert, R. J.; Siperko, L. M.; Wang, G.; Narayanan, R. Chem. Soc. Rev. 2008, 37, 1001.
[27] (a) Sun, L.; Yu, C.; Irudayaraj, J. Anal. Chem. 2007, 79, 3981;
(b) Wang, Y.; Tang, L. J.; Jiang, J. Anal. Chem. 2013, 85, 9213;
(c) Lee, J. H.; Nam, J. M.; Jeon, K. S.; Lim, D. K.; Kim, H.; Kwon, S.; Lee, H.; Suh, Y. D. ACS Nano 2016, 6, 9574;
(d) Qian, X.; Zhou, X.; Nie, S. J. Am. Chem. Soc. 2008, 130, 14934;
(e) MacAskill, A.; Crawford, D.; Graham, D.; Faulds, K. Anal. Chem. 2009, 81, 8134;
(f) Li, Z.; Zhao, A.; Gao, Q.; Guo, H.; Wang, D.; Li, L. Acta Chim. Sinica 2015, 73, 847. (李振兴, 赵爱武, 高倩, 郭红燕, 王大朋, 李磊, 化学学报, 2015, 73, 847.)
[28] Thacker, V. V.; Herrmann, L. O.; Sigle, D. O.; Zhang, T.; Liedl, T.; Baumberg, J. J.; Keyser, U. F. Nat. Commun. 2014, 5, 3448.
[29] Su, J.; Wang, D.; Nörbel, L.; Shen, J.; Zhao, Z.; Dou, Y.; Peng, T.; Shi, J.; Mathur, S.; Fan, C.; Song, S. Anal. Chem. 2017, 89, 2531.
[30] (a) Kinkhabwala, A.; Yu, Z.; Fan, S.; Avlasevich, Y.; Müllen, K.; Moerner, W. E. Nat. Photonics 2009, 3, 654;
(b) Wang, Y; Zu, X.; Yi, G.; Luo, H.; Wang, H.; Song, X. Chin. J. Chem. 2016, 34, 1321.
[31] Acuna, G. P.; Möller, F. M.; Holzmeister, P.; Beater, S.; Lalkens, B.; Tinnefeld, P. Science 2012, 338, 506.
[32] Qin, W.; Peng, T.; Gao, Y.; Wang, F.; Hu, X.; Wang, K.; Shi, J.; Li, D.; Ren, J.; Fan, C. Angew. Chem., Int. Ed. 2017, 56.
[33] Liu, M.; Li, Q.; Liang, L.; Li, J.; Wang, K.; Li, J.; Lv, M.; Chen, N.; Song, H.; Lee, J.; Shi, J.; Wang, L.; Lal, R.; Fan, C. Nat. Commun. 2017, 8, 15646.
[34] Kang, B.; Mackey, M. A.; El-Sayed, M. A. J. Am. Chem. Soc. 2010, 132, 1517.
[35] Qian, W.; Huang, X.; Kang, B.; El-Sayed, M. A. J. Biomed. Opt. 2010, 15, 046025.
[36] Hu, R.; Yong, K.-T.; Roy, I.; Ding, H.; He, S.; Prasad, P. N. J. Phys. Chem. C 2009, 113, 2676.
[37] (a) El-Sayed, I. H.; Huang, X.; El-Sayed, M. A. Nano Lett. 2005, 5, 829;
(b) Kang, B.; Mackey, M. A.; El-Sayed, M. A. J. Am. Chem. Soc. 2010, 132, 1517;
(c) Yu, C.; Nakshatri, H.; Irudayaraj, J. Nano Lett. 2007, 7, 2300;
(d) Yu, C.; Irudayaraj, J. Anal. Chem. 2007, 79, 572.
[38] Xiong, B.; Zhou, R.; Hao, J.; Jia, Y.; He, Y.; Yeung, E. S. Nat. Commun. 2013, 4, 1708.
[39] Lee, K.; Cui, Y.; Lee, L. P.; Irudayaraj, J. Nat. Nanotechnol. 2014, 9, 474.
[40] Isojima, H.; Iino, R.; Niitani, Y.; Noji, H.; Tomishige, M. Nat. Chem. Biol. 2016, 12, 290.
[41] (a) Qian, X.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Dong, M. S.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. Nat. Biotechnol. 2008, 26, 83;
(b) Wang, X.; Wang, C.; Cheng, L.; Lee, S. T.; Liu, Z. J. Am. Chem. Soc. 2012, 134, 7414;
(c) Ando, J.; Fujita, K.; Smith, N. I.; Kawata, S. Nano Lett. 2011, 11, 5344;
(d) Kneipp, J.; Kneipp, H.; Wittig, B.; Kneipp, K. J. Phys. Chem. C 2010, 114, 7421;
(e) Wang, Z.; Zong, S.; Yang, J.; Li, J.; Cui, Y. Biosens. Bioelectron. 2011, 26, 2883.
[42] Lin, L.; Tian, X.; Hong, S.; Dai, P.; You, Q.; Wang, R.; Feng, L.; Xie, C.; Tian, Z.; Chen, X. Angew. Chem, Int. Ed. 2013, 52, 7266.
/
〈 |
|
〉 |