综述

基于光学显微术的单粒子传感

  • 王咏婕 ,
  • 王伟
展开
  • 南京大学化学化工学院 生命分析化学国家重点实验室 南京 210023
王咏婕,博士研究生,2015年毕业于南京大学化学化工学院,获得理学学士学位.从2015年9月起在南京大学化学化工学院生命分析国家重点实验室硕博连读,导师为王伟教授.主要研究兴趣为表面等离激元共振显微成像等;王伟,南京大学化学化工学院教授、博士生导师.2004年和2009年分别从中国科学技术大学化学系获得理学学士和分析化学博士学位.2009~2013在美国亚利桑那州立大学从事博士后研究.2013年11月入选国家"青年千人计划",2013年12月起任南京大学教授.2015年获得国家自然基金委优秀青年基金和江苏省杰出青年基金.主要研究领域包括光学显微成像技术、单细胞和单分子分析检测等,致力于发展表面等离激元共振显微镜这一新兴光学成像技术的基础理论及其在单细胞成像和纳米电化学领域的分析应用.

收稿日期: 2017-07-27

  网络出版日期: 2017-09-18

基金资助

国家自然科学基金委重大科研仪器研制项目(No.21527807)资助.

Single Nanoparticle Sensing Based on Optical Microscopy

  • Wang Yongjie ,
  • Wang Wei
Expand
  • State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023

Received date: 2017-07-27

  Online published: 2017-09-18

Supported by

Project supported by the National Natural Science Foundation of China (No. 21527807).

摘要

基于光学显微术的单粒子传感技术是一种将光学显微镜等具有空间分辨能力的研究工具应用于分析传感领域的检测技术.该技术将单个纳米粒子视作一个完整的纳米传感器,分子识别和信号转换均在单个纳米粒子界面上完成,信号读取则通过不同种类的光学显微镜来实现.与宏观的纳米传感器相比,单粒子传感技术通过对单个纳米粒子的光学特征信号进行测量、计数和追踪,可以获得局域微区内分析物的定性和定量信息,从而具有高灵敏度、高通量和可用于微观复杂体系的动态检测等显著优点.首先简要回顾了单粒子光学传感技术的发展历史和国内外研究现状,随后介绍了其主要技术特点,并重点综述了该领域近五年内的重要研究成果.最后指出通过纳米探针、光学成像技术和多维数据处理等多方面的持续发展,可进一步提高单粒子光学传感器的性能,有望使其在分析科学、生命科学和材料科学等诸多领域获得更加广泛和深入的应用.

本文引用格式

王咏婕 , 王伟 . 基于光学显微术的单粒子传感[J]. 化学学报, 2017 , 75(11) : 1061 -1070 . DOI: 10.6023/A17070342

Abstract

Single nanoparticle sensing (SNS) is an emerging research field which utilizes single nanoparticles as individual nano-sensors to acquire the qualitative and quantitative information of the analytes in a localized and microscopic sample environment. Both the molecular recognition and signal transduction take place at the surface of a single nanoparticle. Versatile kinds of optical microscopy, such as dark-field microscopy and fluorescence microscopy, are often applied to locating the nano-sensor, and to accessing and analyzing the optical signal it reports. Compared to traditional sensing mechanisms that rely on ensemble nanomaterials, SNS has demonstrated its excellent sensitivity down to single molecule detection by focusing in extremely small volumes in the range of aL~pL. Simultaneous monitoring on many individual nano-sensors in a nano-array further allows for high-throughput and multiplex analysis. More importantly, single nanoparticles can be easily introduced to microscopic and dynamic systems such as living cells to probe specific analytes with high temporal and spatial resolution while maintaining the excellent sensitivity. In this review, we begin with a brief introduction on the history and development of SNS, which is followed by its major features. We subsequently survey the recent progresses in this field in the past five years, focusing on the different sensing principles, single nanoparticle counting and single nanoparticle tracking. We finally provide our perspectives that further developments on nano-probes, optical imaging techniques and data analysis are critical to the growth and applications of SNS in broad fields.

参考文献

[1] Albert, K. J.; Lewis, N. S.; Schauer, C. L.; Sotzing, G. A.; Stitzel, S. E.; Vaid, T. P.; Walt, D. R. Chem. Rev. 2000, 100, 2595.
[2] Fadel, T. R.; Farrell, D. F.; Friedersdorf, L. E.; Griep, M. H.; Hoover, M. D.; Meador, M. A.; Meyyappan, M. ACS Sens. 2016, 1, 207.
[3] Kemling, J. W.; Qavi, A. J.; Bailey, R. C.; Suslick, K. S. J. Phys. Chem. Lett. 2011, 2, 2934.
[4] Paolesse, R.; Nardis, S.; Monti, D.; Stefanelli, M.; Di, N. C. Chem. Rev. 2017, 117, 2517.
[5] Janata, J.; Josowicz, M.; Vanýsek, P.; DeVaney, D. M. Anal. Chem. 1998, 70, 179.
[6] Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Chem. Rev. 2012, 112, 2739.
[7] Thévenot, D. R.; Toth, K.; Durst, R. A.; Wilson, G. S. Pure Appl. Chem. 1999, 71, 2333.
[8] Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T. D.; Brus, L. E. Nature 1996, 383, 802.
[9] Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; And, C. A. M.; Letsinger, R. L. J. Am. Chem. Soc. 1998, 120, 1959.
[10] Weiss, S. Science 1999, 283, 1676.
[11] Homola, J.; Yee, S. S.; Gauglitz, G. Sens. Actuators, B 1999, 54, 3.
[12] ?tyroký, J.; Homola, J.; Lambeck, P. V.; Musa, S.; Hoekstra, H. J. W. M.; Harris, R. D.; Wilkinson, J. S.; Usievich, B.; Lyndin, N. M. Sens. Actuators, B 1999, 54, 66.
[13] Taton, T. A.; Mirkin, C. A.; Letsinger, R. L. Science 2000, 289, 1757.
[14] Xu, H.; Aizpurua, J.; Kall, M.; Apell, P. Phys. Rev. E 2000, 62, 4318.
[15] McFarland, A. D.; Van Duyne, R. P. Nano Lett. 2003, 3, 1057.
[16] Liu, Y.; Huang, C. Z. ACS Nano 2013, 7, 11026.
[17] Sun, S.; Gao, M.; Lei, G.; Zou, H.; Ma, J.; Huang, C. Z. Nano. Res. 2016, 9, 1125.
[18] Liu, Y.; Huang, C. Z. Chem. Commun. 2013, 49, 8262.
[19] Gao, P. F.; Gao, M. X.; Zou, H. Y.; Li, R. S.; Zhou, J.; Ma, J.; Wang, Q.; Liu, F.; Li, N.; Li, Y. F.; Huang, C. Z. Chem. Sci. 2016, 7, 5477.
[20] Zhou, J.; Lei, G.; Zheng, L. L.; Gao, P. F.; Huang, C. Z. Nanoscale 2016, 8, 11467.
[21] Wang, K.; Qiu, X.; Dong, C.; Ren, J. ChemBioChem 2007, 8, 1126.
[22] Lan, T.; Dong, C.; Huang, X.; Ren, J. Analyst 2011, 136, 4247.
[23] Zhang, B.; Lan, T.; Huang, X.; Dong, C.; Ren, J. Anal. Chem. 2013, 85, 9433.
[24] Liu, H.; Dong, C.; Ren, J. J. Am. Chem. Soc. 2014, 136, 2775.
[25] Zhang, L.; Li, Y.; Li, D. W.; Jing, C.; Chen, X.; Lv, M.; Huang, Q.; Long, Y. T.; Willner, I. Angew. Chem. Int. Ed. 2011, 50, 6789.
[26] Jin, H. Y.; Li, D. W.; Zhang, N.; Gu, Z.; Long, Y. T. ACS Appl. Mater. Interfaces 2015, 7, 12249.
[27] Yu, R. J.; Sun, J. J.; Song, H.; Tian, J. Z.; Li, D. W.; Long, Y. T. Sensors 2017, 17, 530.
[28] Xiao, L.; Qiao, Y. X.; He, Y.; Yeung, E. S. Anal. Chem. 2010, 82, 5268.
[29] Peng, Y.; Xiong, B.; Peng, L.; Li, H.; He, Y.; Yeung, E. S.; Chem, A. Anal. Chem. 2015, 87, 200.
[30] Yan, X.; Zhong, W.; Tang, A.; Schielke, E. G.; Hang, W.; Nolan, J. P. Anal. Chem. 2005, 77, 7673.
[31] Yang, L.; Zhu, S.; Hang, W.; Wu, L.; Yan, X. Anal. Chem. 2009, 81, 2555.
[32] Zhu, S.; Yang, L.; Long, Y.; Gao, M.; Huang, T.; Hang, W.; Yan, X. J. Am. Chem. Soc. 2010, 132, 12176.
[33] Ma, L.; Zhu, S.; Tian, Y.; Zhang, W.; Wang, S.; Chen, C.; Wu, L.; Yan, X. Angew. Chem. 2016, 128, 10239.
[34] Zhu, S.; Ma, L.; Wang, S.; Chen, C.; Zhang, W.; Yang, L.; Hang, W.; Nolan, J. P.; Wu, L.; Yan, X. ACS Nano 2014, 8, 10998.
[35] Liu, S. L.; Zhang, Z. L.; Sun, E. Z.; Peng, J.; Xie, M.; Tian, Z. Q.; Lin, Y.; Pang, D. W. Biomaterials 2011, 32, 7616.
[36] Zhou, P.; Zheng, Z.; Lu, W.; Zhang, F.; Zhang, Z.; Pang, D.; Hu, B.; He, Z.; Wang, H. Angew. Chem. Int. Ed. 2012, 51, 670.
[37] Liu, S. L.; Zhang, Z. L.; Tian, Z. Q.; Zhao, H. S.; Liu, H.; Sun, E. Z.; Xiao, G. F.; Zhang, W.; Wang, H. Z.; Pang, D. W. ACS Nano 2012, 6, 141.
[38] Liu, S. L.; Li, J.; Zhang, Z. L.; Wang, Z. G.; Tian, Z. Q.; Wang, G. P.; Pang, D. W. Sci. Rep. 2013, 3, 2462.
[39] Wen, L.; Lin, Y.; Zheng, Z. H.; Zhang, Z. L.; Zhang, L. J.; Wang, L. Y.; Wang, H. Z.; Pang, D. W. Biomaterials 2014, 35, 2295.
[40] Zhang, C. Y.; Johnson, L. W. Angew. Chem. Int. Ed. 2007, 46, 3482.
[41] Zhang, C.; Johnson, L. W. Anal. Chem. 2009, 81, 3051.
[42] Zhang, C.; Hu, J. Anal. Chem. 2010, 82, 1921.
[43] Zhou, J.; Wang, Q.; Zhang, C. Y. J. Am. Chem. Soc. 2013, 135, 2056.
[44] Xu, Q.; Zhang, Y.; Zhang, C. Y. Chem. Commun. 2015, 51, 9121.
[45] Haes, A. J.; Van Duyne, R. P. J. Am. Chem. Soc. 2002, 124, 10596.
[46] Vosgröne, T.; Meixner, A. J. ChemPhysChem 2005, 6, 154.
[47] Kneipp, J.; Kneipp, H.; Kneipp, K. Chem. Soc. Rev. 2008, 37, 1052.
[48] Mayer, K. M.; Hafner, J. H. Chem. Rev. 2011, 111, 3828.
[49] Chen, K. I.; Li, B. R.; Chen, Y. T. Nano Today 2011, 6, 131.
[50] Scida, K.; Stege, P. W.; Haby, G.; Messina, G. A.; García, C. D. Anal. Chim. Acta 2011, 691, 6.
[51] Sapsford, K. E.; Tyner, K. M.; Dair, B. J.; Deschamps, J. R.; Medintz, I. L. Anal. Chem. 2011, 83, 4453.
[52] Chiang, C. K.; Chen, W. T.; Chang, H. T. Chem. Soc. Rev. 2011, 40, 1269.
[53] Chen, G.; Song, F.; Xiong, X.; Peng, X. Ind. Eng. Chem. Res. 2013, 52, 11228.
[54] Oja, S. M.; Wood, M.; Zhang, B. Anal. Chem. 2013, 85, 473.
[55] Lei, G.; He, Y. Acta Phys.-Chim. Sin. 2017, doi:10. 3866/PKU. WHXB201706301(in Chinese). (雷刚, 何彦, 物理化学学报, 2017, doi:10. 3866/PKU. WHXB201706301)
[56] Nie, S.; Emory, S. R. Science 1997, 275, 1102.
[57] Cui, J.; Beyler, A. P.; Marshall, L. F.; Chen, O.; Harris, D. K.; Wanger, D. D.; Brokmann, X.; Bawendi, M. G. Nat. Chem. 2013, 5, 602.
[58] Hwang, W. S.; Truong, P. L.; Sang, J. S. Anal. Biochem. 2012, 421, 213.
[59] Blaber, M. G.; Henry, A.-I.; Bingham, J. M.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. C 2012, 116, 393.
[60] Fang, Y.; Wang, W.; Wo, X.; Luo, Y.; Yin, S.; Wang, Y.; Shan, X.; Tao, N. J. Am. Chem. Soc. 2014, 136, 12584.
[61] Xiao, L.; Wei, L.; Liu, C.; He, Y.; Yeung, E. S. Angew. Chem. Int. Ed. 2012, 51, 4181.
[62] Ament, I.; Prasad, J.; Henkel, A.; Schmachtel, S.; Sönnichsen, C. Nano Lett. 2012, 12, 1092.
[63] Sebba, D. S.; Watson, D. A.; Nolan, J. P. ACS Nano 2009, 3, 1477.
[64] Kruss, S.; Salem, D. P.; Vukovi?, L.; Lima, B.; Vander, E. E.; Boyden, E. S.; Strano, M. S. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 1789.
[65] Liu, M.; Chao, J.; Deng, S.; Wang, K.; Li, K.; Fan, C. Colloids Surf., B 2014, 124, 111.
[66] Xiong, B.; Zhou, R.; Hao, J.; Jia, Y.; He, Y.; Yeung, E. S. Nat. Commun. 2013, 4, 1708.
[67] Gu, Z.; Jing, C.; Ying, Y. L.; He, P.; Long, Y. T. Theranostics 2015, 5, 188.
[68] Weigel, A.; Sebesta, A.; Kukura, P. ACS Photonics 2014, 1, 848.
[69] Wolfbeis, O. S. Chem. Soc. Rev. 2015, 44, 4743.
[70] Liu, X.; Zhang, N.; Bing, T.; Shangguan, D. Anal. Chem. 2014, 86, 2289.
[71] Yang, L.; Li, N.; Pan, W.; Yu, Z.; Tang, B.; Chem, A. Anal. Chem. 2015, 87, 3678.
[72] Syal, K.; Wang, W.; Shan, X.; Wang, S.; Chen, H.; Tao, N. Biosens. Bioelectron. 2015, 63, 131.
[73] Yuan, L.; Wang, X.; Fang, Y.; Liu, C.; Jiang, D.; Wo, X.; Wang, W.; Chen, H. Y. Anal. Chem. 2016, 88, 2321.
[74] Andrecka, J.; Spillane, K. M.; Ortega-Arroyo, J.; Kukura, P. ACS Nano 2013, 7, 10662.
[75] Piliarik, M.; Sandoghdar, V. Nat. Commun. 2014, 5, 4495.
[76] Spindler, S.; Ehrig, J.; König, K.; Nowak, T.; Piliarik, M.; Stein, H. E.; Taylor, R. W.; Garanger, E.; Lecommandoux, S.; Alves, I. D. J. Phys. D:Appl. Phys. 2016, 49, 274002.
[77] Mansuripur, M.; Peyghambarian, N.; Lau, P. C.; Norwood, R. A. Biomed. Opt. Express 2014, 5, 2420.
[78] Kruss, S.; Landry, M. P.; Ende, E. V.; Lima, B. M. A.; Reuel, N. F.; Zhang, J.; Nelson, J.; Mu, B.; Hilmer, A.; Strano, M. J. Am. Chem. Soc. 2014, 136, 713.
[79] Guo, L.; Ferhan, A. R.; Lee, K.; Kim, D. H. Anal. Chem. 2011, 83, 2605.
[80] Wang, Y.; Kar, A.; Paterson, A.; Kourentzi, K.; Le, H.; Ruchhoeft, P.; Willson, R.; Bao, J. ACS Photonics 2014, 1, 241.
[81] Germain, M. E.; Knapp, M. J. J. Am. Chem. Soc. 2008, 130, 5422.
[82] Paolesse, R.; Monti, D.; Dini, F.; Di, N. C. Top. Curr. Chem. 2011, 300, 139.
[83] Diehl, K. L.; Anslyn, E. V. Chem. Soc. Rev. 2013, 42, 8596.
[84] Haes, A. J.; Van Duyne, R. P. Anal. Bioanal. Chem. 2004, 379, 920.
[85] Whitney, A. V.; Elam, J. W.; Zou, S.; Zinovev, A. V.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P. J. Phys. Chem. B 2005, 109, 20522.
[86] Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Duyne, R. P. V. Nat. Mater. 2008, 7, 442.
[87] Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Science 1997, 277, 1078.
[88] Liu, J.; Lu, Y. Angew. Chem. Int. Ed. 2005, 45, 90.
[89] Lee, J. S.; Han, M. S.; Mirkin, C. A. Angew. Chem. Int. Ed 2007, 119, 4171.
[90] Liu, X.; Wu, Z.; Zhang, Q.; Zhao, W.; Zong, C.; Gai, H. Anal. Chem. 2016, 88, 2119.
[91] Ma, J.; Zhan, L.; Li, R. S.; Gao, P. F.; Huang, C. Z. Anal. Chem. 2017, 89, 8484.
[92] Mitra, A.; Ignatovich, F.; Novotny, L. Biosens. Bioelectron. 2012, 31, 499.
[93] Zhang, C. Y.; Yeh, H. C.; Kuroki, M. T.; Wang, T. H. Nat. Mater. 2005, 4, 826.
[94] Wang, L. J.; Yang, Y.; Zhang, C. Y. Anal. Chem. 2015, 87, 4696.
[95] Halpern, A. R.; Wood, J. B.; Wang, Y.; Corn, R. M. ACS Nano 2014, 8, 1022.
[96] Xiang, W.; Li, Z.; Jiang, Y.; Li, M.; Su, Y.; Wang, W.; Tao, N. Anal. Chem. 2016, 88, 2380.
[97] Vasco, F.; Andrea, H.; Wim, J. Pharm. Res. 2010, 27, 796.
[98] Dragovic, R. A.; Gardiner, C.; Brooks, A. S.; Tannetta, D. S.; Ferguson, D. J.; Hole, P.; Carr, B.; Redman, C. W.; Harris, A. L.; Dobson, P. J. Nanomedicine 2011, 7, 780.
[99] Gross, J.; Sayle, S.; Karow, A. R.; Bakowsky, U.; Garidel, P. Eur. J. Pharm. Biopharm. 2016, 104, 30.
[100] Ramunas, J.; Montgomery, H. J.; Kelly, L.; Sukonnik, T.; Ellis, J.; Jervis, E. J. Mol. Ther. 2007, 15, 810.
[101] Bruckbauer, A.; James, P.; Zhou, D.; Yoon, J. W.; Excell, D.; Korchev, Y.; Jones, R.; Klenerman, D. Biophys. J. 2007, 93, 3120.
[102] Lew, M. D.; Thompson, M. A.; Badieirostami, M.; Moerner, W. E. Proc. SPIE. Int. Soc. Opt. Eng. 2010, 7571, 75710Z.
[103] Wang, W.; Liu, J.; Li, C.; Zhang, J.; Liu, J.; Dong, A.; Kong, D. J. Mater. Chem. B 2014, 2, 4185.
[104] Yu, J. C.; Chen, Y. L.; Zhang, Y. Q.; Yao, X. K.; Qian, C. G.; Huang, J.; Zhu, S.; Jiang, X. Q.; Shen, Q. D.; Gu, Z. Chem. Commun. 2014, 50, 4699.
[105] Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. Science 2002, 298, 1759.
[106] Clapp, A. R.; Medintz, I. L.; Mauro, J. M.; Fisher, B. R.; Bawendi, M. G.; Mattoussi, H. J. Am. Chem. Soc. 2004, 126, 301.
[107] Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Nat. Mater. 2005, 4, 435.
[108] Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538.
[109] Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Nat. Methods 2008, 5, 763.
[110] Dahan, M.; Lévi, S.; Luccardini, C.; Rostaing, P.; Riveau, B.; Triller, A. Science 2003, 302, 442.
[111] Chang, J.; Rosenthal, S. J. ACS Chem. Neurosci. 2012, 3, 737.
[112] Maier, S. A.; Kik, P. G.; Atwater, H. A.; Meltzer, S.; Harel, E.; Koel, B. E.; Requicha, A. A. G. Nat. Mater. 2003, 2, 229.
[113] Eustis, S.; Elsayed, M. A. Chem. Soc. Rev. 2006, 35, 209.
[114] Tam, F.; Goodrich, G. P.; Johnson, B. R.; Halas, N. J. Nano Lett. 2007, 7, 496.
[115] Xiao, L.; Yeung, E. S. Annu. Rev. Anal. Chem. 2014, 7, 89.
[116] Yan, G.; Sun, W.; Wang, G.; Jeftinija, K.; Jeftinija, S.; Fang, N. Nat. Commun. 2012, 3, 1030.
[117] Stender, A. S.; Marchuk, K.; Liu, C.; Sander, S.; Meyer, M. W.; Smith, E. A.; Neupane, B.; Wang, G.; Li, J.; Cheng, J. X. Chem. Rev. 2013, 113, 2469.
[118] Ji, W. H.; Ruberu, T. P. A.; Han, R.; Dong, B.; Vela, J.; Fang, N. J. Am. Chem. Soc. 2014, 136, 1398.
[119] Chang, W. S.; Ha, J. W.; Slaughter, L. S.; Link, S. Proc. Nat. Acad. Sci. U. S. A. 2010, 107, 2781.
[120] Yuan, T. L.; Jiang, Y. Y.; Wang, W. Prog. Chem. 2016, 28, 607. (in Chinese). (袁婷联, 蒋莹琰, 王伟, 化学进展, 2016, 28, 607.)
[121] Zhu, J.; Yong, K. T.; Roy, I.; Hu, R.; Ding, H.; Zhao, L.; Swihart, M. T.; He, G. S.; Cui, Y.; Prasad, P. N. Nanotechnology 2010, 21, 285106.
[122] Zhao, T.; Yu, K.; Li, L.; Zhang, T.; Guan, Z.; Gao, N.; Yuan, P.; Li, S.; Yao, S. Q.; Xu, Q. H. ACS Appl. Mater. Interfaces 2014, 6, 2700.
[123] Xiao, L.; Qiao, Y.; He, Y.; Yeung, E. S. J. Am. Chem. Soc. 2011, 133, 10638.
[124] Dewitt, M. A.; Yildiz, A. Science 2012, 335, 221.
[125] Li, Q.; Li, W.; Yin, W.; Guo, J.; Zhang, Z. P.; Zeng, D.; Zhang, X.; Wu, Y.; Zhang, X. E.; Cui, Z. ACS Nano 2017, 11, 3890.
[126] Li, N.; Chang, C.; Pan, W.; Tang, B. Angew. Chem. Int. Ed. 2012, 51, 7426.
[127] Xu, K.; Qiang, M.; Gao, W.; Su, R.; Li, N.; Gao, Y.; Xie, Y.; Kong, F.; Tang, B. Chem. Sci. 2013, 4, 1079.
[128] Xie, T.; Jing, C.; Long, Y. T. Analyst 2017, 142, 409.
[129] Ma, W.; Ma, H.; Chen, J. F.; Peng, Y. Y.; Yang, Z. Y.; Wang, H. F.; Ying, Y. L.; Tian, H.; Long, Y. T. Chem. Sci. 2017, 8, 1854.
[130] Li, M.; Shi, L.; Xie, T.; Jing, C.; Xiu, G.; Long, Y. T. ACS Sens. 2017, 2, 263.
[131] Liu, Q.; Ma, C.; Liu, X. P.; Wei, Y. P.; Mao, C. J.; Zhu, J. J. Biosens. Bioelectron. 2017, 92, 273.
[132] Chen, Z.; Li, J.; Chen, X.; Cao, J.; Zhang, J.; Min, Q.; Zhu, J. J. J. Am. Chem. Soc. 2015, 137, 1903.
[133] Zhao, M.; Fan, G. C.; Chen, J. J.; Shi, J. J.; Zhu, J. J. Anal. Chem. 2015, 87, 12340.
[134] Fan, G. C.; Zhao, M.; Zhu, H.; Shi, J. J.; Zhang, J. R.; Zhu, J. J. J. Phys. Chem. C 2015, 120, 15657.

文章导航

/