纳米荧光探针用于核酸分子的检测及成像研究
收稿日期: 2017-08-03
网络出版日期: 2017-09-18
基金资助
项目受973计划(No.2013CB933800)、国家自然科学基金(Nos.21390411,21535004,21422505,21375081,21505087)、山东省杰出青年科学自然科学基金(No.JQ201503)资助.
Fluorescent Nanoprobe for Detection and Imaging of Nucleic Acid Molecules
Received date: 2017-08-03
Online published: 2017-09-18
Supported by
Project supported by the 973 Program (No. 2013CB933800), the National Natural Science Foundation of China (Nos. 21390411, 21535004, 21422505, 21375081, 21505087), and the Natural Science Foundation for Distinguished Young Scholars of Shandong Province (No. JQ201503).
核酸,包括脱氧核糖核酸和核糖核酸,在生物的生长、发育、突变、炎症、癌症等正常或异常的生命活动中发挥着重要的作用,它们的异常表达与多种疾病的发生、发展也密切相关.因此,发展准确、有效的方法实现核酸分子的检测,对深入探究核酸的功能调控以及相关疾病的早期检测与治疗都具有重要的意义.荧光检测法与荧光成像技术具有灵敏度高、时空分辨率高等优点,为实时、准确的检测核酸分子提供了有力的工具.本文着重综述了近年来发展的纳米荧光探针用于疾病相关核酸分子的检测与细胞和活体成像工作的研究进展,最后提出了进一步构建新型纳米荧光探针用于核酸检测面临的挑战、未来发展方向与展望.
杨立敏 , 刘波 , 李娜 , 唐波 . 纳米荧光探针用于核酸分子的检测及成像研究[J]. 化学学报, 2017 , 75(11) : 1047 -1060 . DOI: 10.6023/A17080353
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), play important roles in normal or abnormal life activities. DNA is an important genetic material and carrier of genetic information. It plays an important role in cell division, biological development, mutation, cancer, etc. RNA includes mRNA, tRNA, microRNA (miRNA) and small RNA. Tumor-associated mRNA has been widely used as a specific marker to assess the migration of tumor cells, and its expression level is related to the tumor burden and malignant progression. MiRNA is a non-coding small molecule RNA that regulates at least 30% of the genes. MiRNA is involved in most of the biological process, such as proliferation, differentiation, senescence, migration and apoptosis. The abnormal expression of DNA, mRNA and miRNA is closely associated with the occurrence and development of multiple diseases. Therefore, developing accurate and effective methods for detecting nucleic acid molecules is of great significance for studying the function of nucleic acid regulation and achieving the early detection and treatment of diseases. Fluorescence detection method and imaging technology provide powerful tools for real-time and accurately detecting nucleic acid molecules due to their high sensitivity and temporal resolution. Fluorescent nanoprobe has many advantages such as good biocompatibility, good solubility and so on. It has been widely used in the detection of nucleic acid molecules for further understanding the roles of nucleic acid in many diseases. In this review, we have showed the roles of various nucleic acid molecules in life activities and illustrated the advances in the development of fluorescent nanoprobe for detection of disease-related DNA, mRNA and miRNA in live cells and in vivo in recent years. The preparation of these nanoprobe, detection mechanism and imaging application were also presented. Finally, the challenge and future development of constructing new fluorescent nanoprobe for nucleic acids detection were proposed.
Key words: fluorescent nanoprobe; nucleic acids; detection; live cells; in vivo; fluorescent imaging
[1] Jackson, S. P.; Bartek, J. Nature 2009, 461, 1071.
[2] Anker, P.; Mulcahy, H.; Chen, X. Q.; Stroun, M. Cancer Metastasis Rev. 1999, 18, 65.
[3] Hanahan, D.; Weinberg, R. A. Cell 2000, 100, 57.
[4] Zimmerman, A. L.; Wu, S. Cancer Lett. 2011, 300, 10.
[5] Rooij, E. v.; Olson, E. N. Nat. Rev. Drug Discov. 2012, 11, 860.
[6] Pavlov, V.; Shlyahovsky, B.; Willner, I. J. Am. Chem. Soc. 2005, 127, 6522.
[7] Hou, T.; Li, W.; Liu, X.; Li, F. Anal. Chem. 2015, 87, 11368.
[8] Liu, H.; Li, L.; Duan, L.; Wang, X.; Xie, Y.; Tong, L.; Wang, Q.; Tang, B. Anal. Chem. 2013, 85, 7941.
[9] Ge, L.; Wang, W.; Hou, T.; Li, F. Biosens. Bioelectron. 2016, 77, 220.
[10] Tian, H.; Sun, Y.; Liu, C.; Duan, X.; Tang, W.; Li, Z. Anal. Chem. 2016, 88, 11384.
[11] Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Anal. Chem. 2007, 79, 6037.
[12] Song, J.; Yang, Q.; Lv, F.; Liu, L.; Wang, S. ACS Appl. Mater. Interfaces 2012, 4, 2885.
[13] Yu, Z.; Sun, Q.; Pan, W.; Li, N.; Tang, B. ACS Nano 2015, 9, 11064.
[14] Yang, L.; Li, N.; Pan, W.; Yu, Z.; Tang, B. Anal. Chem. 2015, 87, 3678.
[15] Yang, R.; Jin, J.; Chen, Y.; Shao, N.; Kang, H.; Xiao, Z.; Tang, Z.; Wu, Y.; Zhu, Z.; Tan, W. J. Am. Chem. Soc. 2008, 130, 8351.
[16] Li, X.; Wang, Y.; Zhang, X.; Zhao, Y.; Liu, C.; Li, Z. Acta Chim. Sinica 2014, 72, 395(in Chinese). (李晓利, 王愈聪, 张学晶, 赵云颉, 刘成辉, 李正平, 化学学报, 2014, 72, 395.)
[17] Bao, H.; Jia, C.; Zhou, Z.; Jin, Q.; Zhao, J. Acta Chim. Sinica 2009, 67, 2144(in Chinese). (包华, 贾春平, 周忠良, 金庆辉, 赵建龙, 化学学报, 2009, 67, 2144.)
[18] Zeng, G.; Xiang, D.; He, Z. Acta Chim. Sinica 2011, 69, 1450. (in Chinese). (曾国平, 向东山, 何治柯, 化学学报, 2011, 69, 1450.)
[19] Deng, H.; Wang, G.; Zhu, B.; Zhu, L.; Wang, D.; Zhuang, Y.; Zhu, X. Acta Chim. Sinica 2012, 70, 2507(in Chinese). (邓洪平, 王国建, 朱邦尚, 朱利娟, 王大力, 庄园园, 朱新远, 化学学报, 2012, 70, 2507.)
[20] Ge, L.; Sun, X.; Hong, Q.; Li, F. ACS Appl. Mater. Interfaces 2017, 9, 13102.
[21] Liu, X.; Aizen, R.; Freeman, R.; Yehezkeli, O.; Willner, I. ACS Nano 2012, 6, 3553.
[22] Song, S.; Liang, Z.; Zhang, J.; Wang, L.; Li, G.; Fan, C. Angew. Chem. Int. Ed. 2009, 48, 8670.
[23] He, S.; Song, B.; Li, D.; Zhu. C.; Qi, W.; Wen, Y.; Wang, L.; Song, S.; Fang, H.; Fan, C. Adv. Funct. Mater. 2010, 20, 453.
[24] Liu, X.; Wang, F.; Aizen, R.; Yehezkeli, O.; Willner, I. J. Am. Chem. Soc. 2013, 135, 11832.
[25] Parvin, N.; Jin, Q.; Wei, Y.; Yu, R.; Zheng, B.; Huang, L.; Zhang, Y.; Wang, L.; Zhang, H.; Gao, M.; Zhao, H.; Hu, W.; Li, Y.; Wang, D. Adv. Mater. 2017, 29, 1606755.
[26] Zhu, X.; Zhou, X.; Xing, D. Chem. Eur. J. 2013, 19, 5487.
[27] Lu, Z.; Zhang, L.; Deng, Y.; Li, S.; He, N. Nanoscale 2012, 4, 5840.
[28] Tu, Y.; Wu, P.; Zhang, H.; Cai, C. Chem. Commun. 2012, 48, 10718.
[29] Tu, Y.; Li, W.; Wu, P.; Zhang, H.; Cai, C. Anal. Chem. 2013, 85, 2536.
[30] Yang, L.; Liu, C.; Ren, W.; Li, Z. ACS Appl. Mater. Interfaces 2012, 4, 6450.
[31] Wang, X.-P.; Yin, B.; Ye, B.-C. RSC Adv. 2013, 3, 8633.
[32] Degliangeli, F.; Kshirsagar, P.; Brunetti, V.; Pompa, P. P.; Fiammengo, R. J. Am. Chem. Soc. 2014, 136, 2264.
[33] Liu, H.; Li, L.; Wang, Q.; Duan, L.; Tang, B. Anal. Chem. 2014, 86, 5487.
[34] Wang, W.; Kong, T.; Zhang, D.; Zhang, J.; Cheng, G. Anal. Chem. 2015, 87, 10822.
[35] Li, W.; Hou, T.; Wu, M.; Li, F. Talanta 2016, 148, 116.
[36] Zhang, H.; Wang, Y.; Zhao, D.; Zeng, D.; Xia, J.; Aldalbahi, A.; Wang, C.; San, L.; Fan C.; Zuo, X.; Mi, X. ACS Appl. Mater. Interfaces 2015, 7, 16152.
[37] Cui, L.; Lin, X.; Lin, N.; Song, Y.; Zhu, Z.; Chen, X.; Yang, C. J. Chem. Commun. 2012, 48, 194.
[38] Dong, H.; Zhang, J.; Ju, H.; Lu, H.; Wang, S.; Jin, S.; Hao, K.; Du, H.; Zhang, X. Anal. Chem. 2012, 84, 4587.
[39] Dong, H.; Lei, J.; Ju, H.; Zhi, F.; Wang, H.; Guo, W.; Zhu, Z.; Yan, F. Angew. Chem., Int. Ed. 2012, 51, 4607.
[40] Wu, Y.; Han, J.; Xue, P.; Xu, R.; Kang, Y. Nanoscale 2015, 7, 1753.
[41] Zhang, P.; He, Z.; Wang, C.; Chen, J.; Zhao, J.; Zhu, X.; Li, C.-Z.; Min, Q.; Zhu, J.-J. ACS Nano 2015, 9, 789.
[42] Li, S.; Xu, L.; Ma, W.; Wu, X.; Sun, M.; Kuang, H.; Wang, L.; Kotov, N. A.; Xu, C. J. Am. Chem. Soc. 2016, 138, 306.
[43] Min, X.; Zhang, M.; Huang, F.; Lou, X.; Xia, F. ACS Appl. Mater. Interfaces 2016, 8, 8998.
[44] Li, J.; Li, D.; Yuan, R.; Xiang, Y. ACS Appl. Mater. Interfaces 2017, 9, 5717.
[45] Zhang, Z.; Wang, Y.; Zhang, N.; Zhang, S. Chem. Sci. 2016, 7, 4184.
[46] Li, L.; Feng, J.; Liu, H.; Li, Q.; Tong, L.; Tang, B. Chem. Sci. 2016, 7, 1940.
[47] Choi, C. K. K.; Li, J.; Wei, K.; Xu, Y. J.; Ho, L. W. C.; Zhu, M.; To, K. K. W.; Choi, C. H. J.; Bian, L. J. Am. Chem. Soc. 2015, 137, 7337.
[48] Li, S.; Xu, L.; Sun, M.; Wu, X.; Liu, L.; Kuang, H.; Xu, C. Adv. Mater. 2017, 29, 1606086.
[49] Lu, Q.; Ericson, D.; Song, Y.; Zhu, C.; Ye, R.; Liu, S.; Spernyak, J. A.; Du, D.; Li, H.; Wu, Y.; Lin, Y. ACS Appl. Mater. Interfaces 2017, 9, 23325.
[50] Ryoo, S.-R.; Lee, J.; Yeo, J.; Na, H. K.; Kim, Y.-K.; Jang, H.; Lee, J. H.; Han, S. W.; Lee, Y.; Kim, V. N.; Min, D.-H. ACS Nano 2013, 7, 5882.
[51] Prigodich, A. E.; Seferos, D. S.; Massich, M. D.; Giljohann, D. A.; Lane, B. C.; Mirkin, C. A. ACS Nano 2009, 3, 2147.
[52] Jayagopal, A.; Halfpenny, K. C.; Perez, J. W.; Wright, D. W. J. Am. Chem. Soc. 2010, 132, 9789.
[53] Yang, Y.; Huang, J.; Yang, X.; Quan, K.; Wang, H.; Ying, L.; Xie, N.; Ou, M.; Wang, K. J. Am. Chem. Soc. 2015, 137, 8340.
[54] Chen, T.; Wu, C. S.; Jimenez, E.; Zhu, Z.; Dajac, J. G.; You, M.; Han, D.; Zhang, X.; Tan, W. Angew. Chem. Int. Ed. 2013, 52, 2012.
[55] Pan, W.; Yang, H.; Zhang, T.; Li, Y.; Li, N.; Tang, B. Anal. Chem. 2013, 85, 6930.
[56] Li, N.; Yang, H.; Pan, W.; Diao, W.; Tang, B. Chem. Commun. 2014, 50, 7473.
[57] Xie, N.; Huang, J.; Yang, X.; Yang, Y.; Quan, K.; Wang, H.; Ying, L.; Ou, M.; Wang, K. Chem. Commun. 2016, 52, 2346.
[58] Ou, M.; Huang, J.; Yang, X.; Quan, K.; Yang, Y.; Xie, N.; Wang, K. Chem. Sci. 2017, 8, 668.
[59] Wu, Z.; Liu, G.-Q.; Yang, X.-L.; Jiang, J.-H. J. Am. Chem. Soc. 2015, 137, 6829.
[60] Shi, J.; Zhou, M.; Gong, A.; Li, Q.; Wu, Q.; Cheng, G. J.; Yang, M.; Sun, Y. Anal. Chem. 2016, 88, 1979.
[61] Xie, N.; Huang, J.; Yang, X.; Yang, Y.; Quan, K.; Ou, M.; Fang, H.; Wang, K. ACS Sens. 2016, 1, 1445.
[62] He, L.; Lu, D.-Q.; Liang, H.; Xie, S.; Luo, C.; Hu, M.; Xu, L.; Zhang, X.; Tan, W. ACS Nano 2017, 11, 4060.
[63] He, D.; He, X.; Yang, X.; Li, H.-W. Chem. Sci. 2017, 8, 2832.
[64] Zhang, R.; Gao, S.; Wang, Z.; Han, D.; Liu, L.; Ma, Q.; Tan, W.; Tian, J.; Chen, X. Adv. Funct. Mater. 2017, 27, 1701027.
[65] Qiao, G.; Gao, Y.; Li, N.; Yu, Z.; Zhuo, L.; Tang, B. Chem. Eur. J. 2011, 17, 11210.
[66] Prigodich, A. E.; Randeria, P. S.; Briley, W. E.; Kim, N. J.; Daniel, W. L.; Giljohann, D. A.; Mirkin, C. A. Anal. Chem. 2012, 84, 2062.
[67] Wang, Z.; Zhang, R.; Wang, Z.; Wang, H.-F.; Wang, Y.; Zhao, J.; Wang, F.; Li, W.; Niu, G.; Kiesewetter, D. O.; Chen, X. ACS Nano 2014, 8, 12386.
[68] Pan, W.; Yang, H.; Li, N.; Yang, L.; Tang, B. Chem. Eur. J. 2015, 21, 6070.
[69] Pan, W.; Li, Y.; Wang, M.; Yang, H.; Li, N.; Tang, B. Chem. Commun. 2016, 52, 4569.
[70] Tang, P.; Zheng, J.; Tang, J.; Ma, D.; Xu, W.; Li, J.; Cao, Z.; Yang, R. Chem. Commun. 2017, 53, 2507.
[71] Li, N.; Chang, C.; Pan, W.; Tang, B. Angew. Chem. Int. Ed. 2012, 51, 7426.
[72] Wang, S.; Xia, M.; Liu, J.; Zhang, S.; Zhang, X. ACS Sens. 2017, 2, 735.
[73] Pan, W.; Zhang, T.; Yang, H.; Diao, W.; Li, N.; Tang, B. Anal. Chem. 2013, 85, 10581.
[74] Luan, M.; Li, N.; Pan, W.; Yang, L.; Yu, Z.; Tang, B. Chem. Commun. 2017, 53, 356.
[75] Yang, L.; Ren, Y.; Pan, W.; Yu, Z.; Tong, L.; Li, N.; Tang, B. Anal. Chem. 2016, 88, 11886.
[76] Yang, L.; Chen, Y.; Pan, W.; Wang, H.; Li, N.; Tang, B. Anal. Chem. 2017, 89, 6196.
/
〈 |
|
〉 |