综述

石墨烯材料生物降解的策略研究

  • 赵克丽 ,
  • 郝莹 ,
  • 朱墨 ,
  • 程国胜
展开
  • a 中国科学院纳米-生物界面重点实验室 中国科学院苏州纳米技术与纳米仿生研究所 苏州 215123;
    b 中国科学院大学 北京 100049;
    c 上海大学化学系 上海 200444
赵克丽,2015年毕业于扬州大学,获工学学士学位,在生物医学部纳米-生物界面重点实验室、程国胜课题组从事三维石墨烯的生物降解性的研究;郝莹,2013年获苏州大学高分子化学与物理专业博士学位;朱墨,2016年毕业于东北农业大学,获理学学士学位.主要研究方向为三维石墨烯支架的构建与促进神经干细胞分化研究;程国胜,1999年7月中国科学院固体物理所获得理学博士学位.从事纳米线电子器件制作工艺和纳电子学表征研究.主要从事纳米器件.纳电子学和纳米结构集成技术研究.

收稿日期: 2017-11-22

  网络出版日期: 2018-01-09

基金资助

项目受国家重大科学研究计划(973项目,No.2014CB965003)资助.

A Review: Biodegradation Strategy of Graphene-Based Materials

  • Zhao Keli ,
  • Hao Ying ,
  • Zhu Mo ,
  • Cheng Guosheng
Expand
  • a CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Jiangsu 215123;
    b University of Chinese Academy of Sciences, Beijing 100049;
    c University of Shanghai, Shanghai 200444

Received date: 2017-11-22

  Online published: 2018-01-09

Supported by

Project supported by the National Key Basic Research Program of China (973 Program, No. 2014CB965003).

摘要

自2004年被发现以来,前沿新材料石墨烯及其衍生物由于其独特的电学、光学和力学性能被广泛关注,在许多领域都展露了光彩,包括新型电池、传感器、新能源和生物医学等领域,尤其在生物医药领域发展迅速.石墨烯及其衍生物良好的生物相容性使其在生物领域中具有重要的应用前景.为了实现石墨烯材料的体内应用,材料的可降解性是值得深入研究的焦点,研究其生物降解行为有助于提高其对环境、生命系统的安全性.到目前为止,石墨烯的生物降解研究主要集中在材料的生物酶促降解,利用一系列方法如异质原子掺杂、表面功能化修饰等对石墨烯材料进行改性,可以调控石墨烯材料的降解.综述了近年来石墨烯材料及其衍生物在生物应用上的降解的研究进展,重点介绍石墨烯的酶促降解和其在生物医学领域的应用前景,为进一步促进石墨烯材料的体内研究提供重要的研究基础和指导意义.

本文引用格式

赵克丽 , 郝莹 , 朱墨 , 程国胜 . 石墨烯材料生物降解的策略研究[J]. 化学学报, 2018 , 76(3) : 168 -176 . DOI: 10.6023/A17110499

Abstract

Since its discovery in 2004, the new frontier materials graphene and its derivatives have attracted a great deal of attention on the fields of new batteries, sensors, new energy and biomedicine, due to their unique electrical, optical and mechanical properties. Specifically, it has been developed rapidly in the biomedical field. The good biocompatibility has endowed graphene and its derivatives great prospects for their biological applications. In order to realize the in vivo application of graphene materials and improve the safety of the environment and life system, it is crucial to consider and study on the biodegradation behaviors of graphene. The research on biodegradation of graphene currently mainly focuses on the enzymatic degradation. The degradation behaviors can be tuned by the modification via a series of methods, such as heterogeneous atom doping and surface functionalization, etc. The progress of biodegradation of graphene and their derivatives, especially the enzymatic degradation and their biomedical applications is discussed. The important basis and guidance to further promote the in vivo study of graphene materials will be provided.

参考文献

[1] Zhang, Y.; Zheng, J.; Guo, M. Chin. J. Chem. 2016, 34, 1268.
[2] Jiang, S.; Qiu, H.; Gao, S.; Chen, P.; Li, Z.; Yu, K.; Yue, W.; Yang, C.; Huo, Y.; Wang, S. Chin. J. Chem. 2016, 34, 1039.
[3] Zhou, P.; He, D. Chin. J. Chem. 2016, 34, 795.
[4] Gu, X.; Zhang, S.; Hou, Y. Chin. J. Chem. 2016, 34, 13.
[5] Liu, D.; Zhang, C.; Lv, X.; Zheng, X.; Zhang, L.; Zhi, L.; Yang, Q.-H. Chin. J. Chem. 2016, 34, 41.
[6] Chen, W.; Sin, M.; Wei, P.-J.; Zhang, Q.-L.; Liu, J.-G. Chin. J. Chem. 2016, 34, 878.
[7] Liu, Z.; Chen, W.; Fan, X.; Yu, J.; Zhao, Y. Chin. J. Chem. 2016, 34, 839.
[8] Gao, Y.; Wang, T.; Liu, F. Chin. J. Chem. 2016, 34, 1297.
[9] Wang, C.; Guo, Z.; Zhang, L.; Zhang, N.; Zhang, K.; Fei, B.; Wang, H.; Xu, J.; Shi, H.; Qin, M.; Ren, L.; Wu, X. Chin. J. Chem. 2016, 34, 1151.
[10] Zhang, J.; Jiang, M.; Xing, L.; Qin, K.; Liu, T.; Zhou, J.; Si, W.; Cui, H.; Zhuo, S. Chin. J. Chem. 2016, 34, 46.
[11] Zhou, Q.; Chen, S.; Zhang, M.; Wang, L.; Li, Y.; Shi, G. Chin. J. Chem. 2016, 34, 59.
[12] Fan, X.; Yang, Z.; Liu, Z. Chin. J. Chem. 2016, 34, 107.
[13] Wang, R.; Jia, P.; Yang, Y.; An, N.; Zhang, Y.; Wu, H.; Hu, Z. Chin. J. Chem. 2016, 34, 114.
[14] Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2010, 110, 132.
[15] Liang, T.; Kong, Y.; Chen, H.; Xu, M. Chin. J. Chem. 2016, 34, 32.
[16] Zhang, Y.; Zhang, L.; Zhou, C. Acc. Chem. Res. 2013, 46, 2329.
[17] Zhao, D.; Li, Z.; Liu, L.; Zhang, Y.; Ren, D.; Li, J. Acta Chim. Sinica 2014, 72, 185. (赵冬梅, 李振伟, 刘领弟, 张艳红, 任德财, 李坚, 化学学报, 2014, 72, 185.)
[18] Li, N.; Zhang, Q.; Gao, S.; Song, Q.; Huang, R.; Wang, L.; Liu, L.; Dai, J.; Tang, M.; Cheng, G. Sci. Rep. 2013, 3, 1604.
[19] Xiao, M.; Kong, T.; Wang, W.; Song, Q.; Zhang, D.; Ma, Q.; Cheng, G. Adv. Funct. Mater. 2015, 25, 6165.
[20] Lee, S. H.; Kim, H. W.; Hwang, J. O.; Lee, W. J.; Kwon, J.; Bielawski, C. W.; Ruoff, R. S.; Kim, S. O. Angew. Chem. 2010, 49, 10084.
[21] Jakus, A. E.; Secor, E. B.; Rutz, A. L.; Jordan, S. W.; Hersam, M. C.; Shah, R. N. ACS Nano 2015, 9, 4636.
[22] Cao, X.; Yin, Z.; Zhang, H. Energy Environ. Sci. 2014, 7, 1850.
[23] Wu, J.; Zhou, A.; Huang, Z.; Li, L.; Bai, H. Chin. J. Chem. 2016, 34, 67.
[24] Liu, Y.; Dong, X.; Chen, P. Chem. Soc. Rev. 2012, 41, 2283.
[25] Zhao, H.; Ding, R.; Zhao, X.; Li, Y.; Qu, L.; Pei, H.; Yildirimer, L.; Wu, Z.; Zhang, W. Drug Discovery Today 2017, 22, 1302.
[26] Cheng, J.; Wan, W.; Zhu, W. Chin. J. Chem. 2016, 34, 53.
[27] Li, Y.; Zhang, Y.; Han, G.; Xiao, Y.; Li, M.; Zhou, W. Chin. J. Chem. 2016, 34, 82.
[28] Liu, Z.; Robinson, J. T.; Sun, X.; Dai, H. J. Am. Chem. Soc. 2008, 130, 10876.
[29] Liu, J.; Cui, L.; Losic, D. Acta Biomater. 2013, 9, 9243.
[30] Feng, L.; Zhang, S.; Liu, Z. Nanoscale 2011, 3, 1252.
[31] Bao, H.; Pan, Y.; Ping, Y.; Sahoo, N. G.; Wu, T.; Li, L.; Li, J.; Gan, L. H. Small 2011, 7, 1569.
[32] Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Nano Lett. 2008, 8, 36.
[33] Fan, W.; Miao, Y.-E.; Ling, X.; Liu, T. Chin. J. Chem. 2016, 34, 73.
[34] Kong, L.; Zhou, X.; Fan, S.; Li, Z.; Gu, Z. Acta Chim. Sinica 2016, 74, 620. (孔丽娟, 周晓燕, 范赛英, 李在均, 顾志国, 化学学报, 2016, 74, 620.)
[35] Huang, J.; Zong, C.; Shen, H.; Liu, M.; Chen, B.; Ren, B.; Zhang, Z. Small 2012, 8, 2577.
[36] Feng, L.; Wu, L.; Qu, X. Adv. Mater. 2013, 25, 168.
[37] Du, Y.; Guo, S. Nanoscale 2016, 8, 2532.
[38] Lin, J.; Chen, X.; Huang, P. Adv. Drug Delivery Rev. 2016, 105, 242.
[39] Keisham, B.; Cole, A.; Nguyen, P.; Mehta, A.; Berry, V. ACS Appl. Mater. Interfaces 2016, 8, 32717.
[40] Meng, F.; Lu, W.; Li, Q.; Byun, J.-H.; Oh, Y.; Chou, T.-W. Adv. Mater. 2015, 27, 5113.
[41] Wu, X.; Ding, S.-J.; Lin, K.; Su, J. J. Mater. Chem. B 2017, 5, 3084.
[42] Li, N.; Zhang, X.; Song, Q.; Su, R.; Zhang, Q.; Kong, T.; Liu, L.; Jin, G.; Tang, M.; Cheng, G. Biomaterials 2011, 32, 9374.
[43] Qi, L.; Li, N.; Huang, R.; Song, Q.; Wang, L.; Zhang, Q.; Su, R.; Kong, T.; Tang, M.; Cheng, G. PLoS One 2013, 8, e59022.
[44] Song, Q.; Jiang, Z.; Li, N.; Liu, P.; Liu, L.; Tang, M.; Cheng, G. Biomaterials 2014, 35, 6930.
[45] Ulloa Severino, F. P.; Ban, J.; Song, Q.; Tang, M.; Bianconi, G.; Cheng, G.; Torre, V. Sci. Rep. 2016, 6, 29640.
[46] Bitounis, D.; Ali-Boucetta, H.; Hong, B. H.; Min, D.-H.; Kostarelos, K. Adv. Mater. 2013, 25, 2258.
[47] Zhang, H.; Peng, C.; Yang, J.; Lv, M.; Liu, R.; He, D.; Fan, C.; Huang, Q. ACS Appl. Mater. Interfaces 2013, 5, 1761.
[48] Wang, I. N. E.; Robinson, J. T.; Do, G.; Hong, G.; Gould, D. R.; Dai, H.; Yang, P. C. Small 2014, 10, 1479.
[49] Depan, D.; Girase, B.; Shah, J. S.; Misra, R. D. K. Acta Biomater. 2011, 7, 3432.
[50] Murray, E.; Thompson, B. C.; Sayyar, S.; Wallace, G. G. Polym. Degrad. Stabil. 2015, 111, 71.
[51] Singh, S. K.; Singh, M. K.; Nayak, M. K.; Kumari, S.; Shrivastava, S.; Grácio, J. J. A.; Dash, D. ACS Nano 2011, 5, 4987.
[52] Zhang, X.; Yin, J.; Peng, C.; Hu, W.; Zhu, Z.; Li, W.; Fan, C.; Huang, Q. Carbon 2011, 49, 986.
[53] Yang, K.; Wan, J.; Zhang, S.; Zhang, Y.; Lee, S.-T.; Liu, Z. ACS Nano 2011, 5, 516.
[54] Sasidharan, A.; Swaroop, S.; Koduri, C. K.; Girish, C. M.; Chandran, P.; Panchakarla, L. S.; Somasundaram, V. H.; Gowd, G. S.; Nair, S.; Koyakutty, M. Carbon 2015, 95, 511.
[55] Duch, M. C.; Budinger, G. R. S.; Liang, Y. T.; Soberanes, S.; Urich, D.; Chiarella, S. E.; Campochiaro, L. A.; Gonzalez, A.; Chandel, N. S.; Hersam, M. C.; Mutlu, G. M. Nano Lett. 2011, 11, 5201.
[56] Shen, J.; Zhu, Y.; Chen, C.; Yang, X.; Li, C. Chem. Commun. 2011, 47, 2580.
[57] Pan, D.; Zhang, J.; Li, Z.; Wu, M. Adv. Mater. 2010, 22, 734.
[58] Zhu, S.; Zhang, J.; Qiao, C.; Tang, S.; Li, Y.; Yuan, W.; Li, B.; Tian, L.; Liu, F.; Hu, R.; Gao, H.; Wei, H.; Zhang, H.; Sun, H.; Yang, B. Chem. Commun. 2011, 47, 6858.
[59] Li, L.-L.; Ji, J.; Fei, R.; Wang, C.-Z.; Lu, Q.; Zhang, J.-R.; Jiang, L.-P.; Zhu, J.-J. Adv. Funct. Mater. 2012, 22, 2971.
[60] Bai, H.; Jiang, W.; Kotchey, G. P.; Saidi, W. A.; Bythell, B. J.; Jarvis, J. M.; Marshall, A. G.; Robinson, R. A. S.; Star, A. J. Phys. Chem. C 2014, 118, 10519.
[61] Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J.-J. Nanoscale 2013, 5, 4015.
[62] Zhang, L.; Petersen, E. J.; Habteselassie, M. Y.; Mao, L.; Huang, Q. Environ. Prog. 2013, 181, 335.
[63] Schreiner, K. M.; Filley, T. R.; Blanchette, R. A.; Bowen, B. B.; Bolskar, R. D.; Hockaday, W. C.; Masiello, C. A.; Raebiger, J. W. Environmen. Sci. Technol. 2009, 43, 3162.
[64] Liu, L.; Zhu, C.; Fan, M.; Chen, C.; Huang, Y.; Hao, Q.; Yang, J.; Wang, H.; Sun, D. Nanoscale 2015, 7, 13619.
[65] Girish, C. M.; Sasidharan, A.; Gowd, G. S.; Nair, S.; Koyakutty, M. Adv. Healthcare Mater. 2013, 2, 1489.
[66] Kotchey, G. P.; Hasan, S. A.; Kapralov, A. A.; Ha, S. H.; Kim, K.; Shvedova, A. A.; Kagan, V. E.; Star, A. Acc. Chem. Res. 2012, 45, 1770.
[67] Kotchey, G. P.; Zhao, Y.; Kagan, V. E.; Star, A. Adv. Drug Delivery Rev. 2013, 65, 1921.
[68] Vlasova, I. I.; Kapralov, A. A.; Michael, Z. P.; Burkert, S. C.; Shurin, M. R.; Star, A.; Shvedova, A. A.; Kagan, V. E. Toxicol. Appl. Pharm. 2016, 299, 58.
[69] Chen, M.; Qin, X.; Zeng, G. Trends Biotechnol. 2017, 35, 836.
[70] Xing, W.; Lalwani, G.; Rusakova, I.; Sitharaman, B. Part. Part. Syst. Charact. 2014, 31, 745.
[71] Allen, B. L.; Kichambare, P. D.; Gou, P.; Vlasova, I. I.; Kapralov, A. A.; Konduru, N.; Kagan, V. E.; Star, A. Nano Lett. 2008, 8, 3899.
[72] Kotchey, G. P.; Allen, B. L.; Vedala, H.; Yanamala, N.; Kapralov, A. A.; Tyurina, Y. Y.; Klein-Seetharaman, J.; Kagan, V. E.; Star, A. ACS Nano 2011, 5, 2098.
[73] Filizola, M.; Loew, G. H. J. Am. Chem. Soc. 2000, 122, 18.
[74] Loeblein, M.; Perry, G.; Tsang, S. H.; Xiao, W.; Collard, D.; Coquet, P.; Sakai, Y.; Teo, E. H. T. Adv. Healthcare Mater. 2016, 5, 1177.
[75] Kurapati, R.; Russier, J.; Squillaci, M. A.; Treossi, E.; Ménard-Moyon, C.; Del Rio-Castillo, A. E.; Vazquez, E.; Samorì, P.; Palermo, V.; Bianco, A. Small 2015, 11, 3985.
[76] Kurapati, R.; Backes, C.; Ménard-Moyon, C.; Coleman, J. N.; Bianco, A. Angew. Chem., Int. Ed. 2016, 55, 5506.
[77] Sureshbabu, A. R.; Kurapati, R.; Russier, J.; Ménard-Moyon, C.; Bartolini, I.; Meneghetti, M.; Kostarelos, K.; Bianco, A. Biomaterials 2015, 72, 20.
[78] Andón, F. T.; Kapralov, A. A.; Yanamala, N.; Feng, W.; Baygan, A.; Chambers, B. J.; Hultenby, K.; Ye, F.; Toprak, M. S.; Brandner, B. D.; Fornara, A.; Klein-Seetharaman, J.; Kotchey, G. P.; Star, A.; Shvedova, A. A.; Fadeel, B.; Kagan, V. E. Small 2013, 9, 2721.
[79] ten Have, R.; Teunissen, P. J. M. Chem. Rev. 2001, 101, 3397.
[80] Hayashi, Y.; Yamazaki, I. J. Biol. Chem. 1979, 254, 9101.
[81] Arnhold, J. Biochemistry 2004, 69, 4.
[82] Valli, K.; Wariishi, H.; Gold, M. H. Biochemistry 1990, 29, 8535.
[83] Lalwani, G.; Xing, W.; Sitharaman, B. J. Mater. Chem. B 2014, 2, 6354.
[84] Rao, C. N. R.; Gopalakrishnan, K.; Govindaraj, A. Nano Today 2014, 9, 324.
[85] Zhang, Y.; Liang, Y.; Zhou, J. Acta Chim. Sinica 2014, 72, 367. (张芸秋, 梁勇明, 周建新, 化学学报, 2014, 72, 367.)
[86] Zhao, Y.; Allen, B. L.; Star, A. J. Phys. Chem. A 2011, 115, 9536.
[87] Wang, X.; Sun, G.; Routh, P.; Kim, D.-H.; Huang, W.; Chen, P. Chem. Soc. Rev. 2014, 43, 7067.
[88] Jeong, H. M.; Lee, J. W.; Shin, W. H.; Choi, Y. J.; Shin, H. J.; Kang, J. K.; Choi, J. W. Nano Lett. 2011, 11, 2472.
[89] Huang, G.-J.; Chen, Z.-G.; Li, M.-D.; Yang, B.; Xin, M.-L.; Li, S.-P.; Yin, Z.-J. Acta Chim. Sinica 2016, 74, 789. (黄国家, 陈志刚, 李茂东, 杨波, 辛明亮, 李仕平, 尹宗杰, 化学学报, 2016, 74, 789.)
[90] Bianco, A.; Kostarelos, K.; Prato, M. Chem. Commun. 2011, 47, 10182.
[91] Rajendra, K.; Fanny, B.; Julie, R.; Sureshbabu, A. R.; Cécilia, M.-M.; Kostas, K.; Alberto, B. 2D Materials 2017, inpress.
[92] Li, Y.; Feng, L.; Shi, X.; Wang, X.; Yang, Y.; Yang, K.; Liu, T.; Yang, G.; Liu, Z. Small 2014, 10, 1544.

文章导航

/