含BN旋转轴的光驱动分子马达的理论设计和机理研究
收稿日期: 2017-11-27
网络出版日期: 2018-01-22
基金资助
项目受国家自然科学基金(Nos.21473107,21636006)和中央高校基本科研业务费(No.GK201502002)专项资金资助.
Theoretical Design and Mechanistic Study on a Light-Driven Molecular Rotary Motor with B=N Axis
Received date: 2017-11-27
Online published: 2018-01-22
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21473107, 21636006) and Fundamental Research Funds for the Central Universities (No. GK201502002).
依据B=N键与C=C键的电子结构相似性,以Feringa型二苯乙烯型光驱动分子马达(CC-stilbene)为母体,设计了含极性旋转轴的模型马达BN-stilbene.CASPT2//CASSCF计算结果表明,优化所得的BN-stilbene分子的基态存在四个与CC-stilbene马达结构相似、相对能量一致的螺旋异构体;B=N极性共价双键对BN-stilbene的基态和激发态电子结构有显著影响.对BN-stilbene模型马达的工作机理研究表明,极性旋转轴的引入使得BN-stilbene中S1/S0-CI与激发态中间体构型更加相似且能量更低,同时可增加旋转的驱动力,起到改进分子马达光异构化过程的单向性的目的.
郭妮 , 王斌 , 刘峰毅 . 含BN旋转轴的光驱动分子马达的理论设计和机理研究[J]. 化学学报, 2018 , 76(3) : 196 -201 . DOI: 10.6023/A17110509
Light-driven molecular motors have attracted overwhelming attention due to their potential applications in a wide range of fields. Despite of the great successes obtained in alkene-based light-driven molecular motors and switches, scientists pursuing high-efficient alternatives with superior working mechanisms have never suspended. In this report, a promising model of light-driven rotary motor, namely BN-stilbene motor, constructed by replacing the central C=C axis of a CC-stilbene rotary motor with a polar B=N bond, was rationally designed. Multireference Complete Active Space Self-Consistent Field (CASSCF) method and Time-Dependent Density Functional (TDDFT) theory were applied to study the mechanism of BN-stilbene, along with the Complete Active Space Second-Order Perturbation Theory (CASPT2) energy corrections. Our calculations show that the B=N axis well preserves the conjugation of between the rotor and stator, leading to four ground-state helical conformers (i.e., cis-stable, trans-unstable, trans-stable and cis-unstable), whose geometries and energies are in line with their counterparts in CC-stilbene motor; in addition, BN-stilbene has similar absorption spectra and more slopped excited-state potential energy curves at Franck-Condon region, which can fascinate a spontaneous rotary motion around B=N axis, thus generates directional photo-induced isomerization from cis-stable to trans-unstable (or from trans-stable to cis-unstable). Moreover, the barriers for helical inversions (trans-unstable → trans-stable or cis-unstable → cis-stable) are found to be lower than those of the reversed thermal rotations (i.e., cis-stable → trans-unstable and trans-stable → cis-unstable), which further insures the unidirectionality of rotation. These features sufficiently allow BN-stilbene to serve as a candidate for light-driven molecular rotary motor. Finally and most importantly, as compared with that of CC-stilbene, the photoisomerization mechanism of BN-stilbene motor shows advantages in nonadiabatic transition:Due to the introducing of polar B=N axis, the S1/S0 conical intersections of BN system are both geometrically and energetically closer to the excited-state intermediate, which is thus expected to improve the nonadiabatic transition probabilities and the unidirectionality of the rotation. Therefore, the BN-stilbene motor is expected to perform a unidirectional, repetitive 360° rotation upon sequential applying of photo and thermal inputs. The findings suggest BN-hetero stilbene as a promising type of light-driven rotary motor and may inspire the design and synthesis of novel molecular motors.
[1] Stock, A.; Pohland, E. Eur. J. Inorg. Chem. 1926, 59, 2215.
[2] Dewar, M. J. S.; Kubba, V. P.; Pettit, R. J. Chem. Soc. 1958, 3073.
[3] Grant, D. J.; Dixon, D. A. J. Phys. Chem. A 2006, 110, 12955.
[4] Campbell, P. G.; Marwitz, A. J. V.; Liu, S. Y. Angew. Chem. Int. Ed. 2012, 51, 6074.
[5] Abbey, E. R.; Zakharov, L. N.; Liu, S. Y. J. Am. Chem. Soc. 2011, 133, 11508.
[6] Knack, D. H.; Marshall, J. L.; Harlow, G. P.; Dudzik, A.; Szaleniec, M.; Liu, S. Y.; Heider, J. Angew. Chem. Int. Ed. 2013, 52, 2599.
[7] Edel, K.; Brough, S. A.; Lamm, A. N.; Liu, S. Y.; Bettinger, H. F. Angew. Chem. Int. Ed. 2015, 54, 7819.
[8] Wang, X. Y.; Zhuang, F. D.; Wang, R. B.; Wang, X. C.; Cao, X. Y.; Wang, J. Y.; Pei, J. J. Am. Chem. Soc. 2014, 136, 3764.
[9] Yang, D. T.; Mellerup, S. K.; Peng, J. B.; Wang, X.; Li, Q. S.; Wang, S. J. Am. Chem. Soc. 2016, 138, 11513.
[10] Shi, Y.; Wang, X.; Wang, N.; Peng, T.; Wang, S. Organometallics 2017, 36, 2677.
[11] Yang, D. T.; Shi, Y.; Peng, T.; Wang, S. Organometallics 2017, 36, 2654.
[12] Pollard, M. M.; Meetsma, A.; Feringa, B. L. Org. Biomol. Chem. 2008, 6, 507.
[13] van Delden, R. A.; Koumura, N.; Harada, N.; Feringa, B. L. Proc. Natl. Acad. Sci. 2002, 99, 4945.
[14] van Delden, R. A.; ter Wiel, M. K. J.; Pollard, M. M.; Vicario, J.; Koumura, N.; Feringa, B. L. Nature 2005, 437, 1337.
[15] Wang, J.; Feringa, B. L. Science 2011, 331, 1429.
[16] Chiang, P. T.; Mieke, J.; Godoy, J.; Guerrero, J. M.; Alemany, L. B.; Villagómez, C. J.; Saywell, A.; Grill, L.; Tour, J. M. ACS Nano 2012, 6, 592.
[17] Chen, K. Y.; Ivashenko, O.; Carroll, G. T.; Robertus, J.; Kistemaker, J. C. M.; London, G.; Browne, W. R.; Rudolf, P.; Feringa, B. L. J. Am. Chem. Soc. 2014, 136, 3219.
[18] van Dijken, D. J.; Chen, J.; Stuart, M. C. A.; Hou, L.; Feringa, B. L. J. Am. Chem. Soc. 2016, 138, 660.
[19] Kazaryan, A.; Filatov, M. J. Phys. Chem. A 2009, 113, 11630.
[20] Torras, J.; Rodriguez-Ropero, F.; Bertran, O.; Alemán, C. J. Phys. Chem. C 2009, 113, 3574.
[21] Pérez-Hernández, G.; González, L. Phys. Chem. Chem. Phys. 2010, 12, 12279.
[22] Cnossen, A.; Kistemaker, J. C. M.; Kojima, T.; Feringa, B. L. J. Org. Chem. 2014, 79, 927.
[23] Li, Y.; Liu, F.; Wang, B.; Su, Q.; Wang, W.; Morokuma, K. J. Chem. Phys. 2016, 145, 244311.
[24] Liu, F.; Morokuma, K. J. Am. Chem. Soc. 2012, 134, 4864.
[25] Lorenz, T.; Crumbach, M.; Eckert, T.; Lik, A.; Helten, H. Angew. Chem. Int. Ed. 2017, 56, 2780.
[26] Krausbeck, F.; Mendive-Tapia, D.; Thom, A. J. W.; Bearpark, M. J. Comput. Theor. Chem. 2014, 1040-1041, 14.
[27] Malmqvist, P. A.; Roos, B. O.; Schimmelpfennig, B. Chem. Phys. Lett. 2002, 357, 230.
[28] Kerridge, A. Phys. Chem. Chem. Phys. 2013, 15, 2197.
[29] Zhao, Y.; Truhlar, D. G. Acc. Chem. Res. 2008, 41, 157.
[30] Levine, B. G.; Ko, C.; Quenneville, J.; Martinez, T. J. Mol. Phys. 2006, 104, 1039.
[31] Levine, B. G.; Coe, J. D.; Martínez, T. J. J. Phys. Chem. B 2008, 112, 405.
[32] Maeda, S.; Ohno, K.; Morokuma, K. J. Chem. Theor. Comput. 2010, 6, 1538.
[33] Andersson, K.; Malmqvist, P. A.; Roos, B. O. J. Chem. Phys. 1992, 96, 1218.
[34] Finley, J.; Malmqvist, P. A.; Roos, B. O.; Serrano-Andres, L. Chem. Phys. Lett. 1998, 288, 299.
[35] Andersson, K. Theor. Chem. Acc. 1995, 91, 31.
[36] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, Revision A. 02, Gaussian, Inc, 2009.
[37] Karlström, G.; Lindh, R.; Malmqvist, P. A.; Roos, B. O.; Ryde, U.; Veryazov, V.; Widmark, P. O.; Cossi, M.; Schimmelpfennig, B.; Neogrady, P.; Seijo, L. Comput. Mater. Sci. 2003, 28, 222.
[38] Aquilante, F.; De Vico, L.; Ferré, N.; Ghigo, G.; Malmqvist, P. A.; Neogrády, P.; Pedersen, T. B.; Pitonak, M.; Reiher, M.; Roos, B. O.; Serrano-andres, L.; Urban, M.; Veryazov, V.; Lindh, R. J. Comput. Chem. 2010, 31, 224.
[39] Kistemaker, J. C. M.; Pizzolato, S. F.; van Leeuwen, T.; Pijper, T. C.; Feringa, B. L. Chem. Eur. J. 2016, 22, 13478.
/
〈 |
|
〉 |