有机/金属有机力致发光材料的研究进展
收稿日期: 2017-11-24
网络出版日期: 2018-02-26
基金资助
项目受中国国家基础研究973计划(No.2015CB932200)、国家自然科学基金(Nos.51673095和61505078)、江苏省自然科学基金(No.BK2015064)和江苏省“六产业高层次人才”(XCL-025)资助.
Progress of Research on Organic/Organometallic Mechanoluminescent Materials
Received date: 2017-11-24
Online published: 2018-02-26
Supported by
Project supported by the National Basic Research Program 973 of China (No. 2015CB932200), the National Natural Science Foundation of China (Nos. 51673095 and 61505078), the Natural Science Foundation of Jiangsu Province (No. BK2015064) and the "High-Level Talents in Six Industries" of Jiangsu Province (No. XCL-025).
刘明丽 , 吴琪 , 史慧芳 , 安众福 , 黄维 . 有机/金属有机力致发光材料的研究进展[J]. 化学学报, 2018 , 76(4) : 246 -258 . DOI: 10.6023/A17110504
Functional materials with unique properties or specific functions, have been developed greatly in the areas of information, aerospace, energy, biology and so forth. Recently, organic/organometallic mechanoluminescence (ML) has attracted considerable attention owing to its unique optical properties induced by external stimulus, which demonstrates great potential as a candidate for sensing of impact, stress, tension or pressure, display and lighting, as well as imaging. In this review, the recent progress on organic/organometallic ML materials, the relationship between molecular structures and properties, their luminescent mechanisms, as well as the applications are summarized. Currently, the organic/organometallic ML systems mainly contain small molecules, including organometallic complexes and pure organic compounds, and polymers. In comparison to the design and preparation of materials, the progress of underlying mechanisms still remains ambiguous without a universal acknowledgement. Up to now, it is generally accepted that organic/organometallic ML materials should have non-centrosymmetric molecular structures, dipolar structures and piezoelectric properties. Because when the crystals are stimulated under grinding, rubbing, cutting, cleaving, shaking, scratching, compressing, or crushing, the center asymmetric molecular structures of organic/organometallic materials are broken, resulting in disruption of the crystal and electronic discharge at the crack surface, then emitting obvious light from the surface of solids state. This organic ML mechanism is mainly derived from the mechanism of inorganic ML. Mechanisms of organic/organometallic ML materials need to be verified by further experiments and theoretical study. As to the mechanism of mechanically activated luminescence of pure organic polymers, it was reported that when the material was stimulated by mechanical forces, the excited state went back to the ground state and emitted light. This review will focus on the recent progress of organic/organometallic mechanoluminescent materials including rare-earth organometallic complex, transition organometallic complex, pure organic small molecule materials and pure organic polymer materials, and their mechanisms during the past decades. Finally, the challenges and the outlook of the organic/organometallic ML have been discussed.
[1] Liang, X.; Wang, Z.; Wang, L.; Hanif, M.; Hu, D.; Su, S.; Xie, Z.; Gao, Y.; Yang, B.; Ma, Y. Chin. J. Chem. 2017, 35, 1559.
[2] Pan, L.; Luo, W.; Chen, M.; Liu, J.; Xu, L.; Hu, R.; Zhao, Z.; Qin, A.; Tang, B. Chin. J. Org. Chem. 2016, 36, 1316. (潘凌翔, 罗文文, 陈明, 刘峻恺, 徐露, 胡蓉蓉, 赵祖金, 秦安军, 唐本忠, 有机化学, 2016, 36, 1316.)
[3] Zhang, Z.; Li, W.; Ye, K.; Zhang, H. Acta Chim. Sinica 2016, 74, 179. (张振宇, 李婉君, 叶开其, 张红雨, 化学学报, 2016, 74, 179.)
[4] Tang, Y.; Huang, H.; Peng, Y.; Ruan, Q.; Wang, K.; Yi, P.; Liu, D.; Zhong, C. Chin. J. Chem. 2017, 35, 1091.
[5] Guan, W.; Zhou, W.; Lü, C. Acta Chim. Sinica 2016, 74, 929. (管伟江, 周文娟, 吕超, 化学学报, 2016, 74, 929.)
[6] An, Z.; Zheng, C.; Tao, Y.; Chen, R.; Shi, H.; Chen, T.; Wang, Z.; Li, H.; Deng, R.; Liu, X.; Huang, W. Nat. Mater. 2015, 14, 685.
[7] Li, L.; Cao, X.; Huang, R. Chin. J. Chem. 2016, 34, 143.
[8] Wei, J.; Liang, B.; Duan, R.; Cheng, Z.; Li, C.; Zhou, T.; Yi, Y.; Wang, Y. Angew. Chem., Int. Ed. 2016, 55, 15589.
[9] Zhao, W.; He, Z.; Lam, J.; Peng, Q.; Ma, H.; Shuai, Z.; Bai, G.; Hao, J.; Tang, B. Chem 2016, 1, 592.
[10] Cao, Y.; Wang, R.; Wu, G.; Fang, Q.; Qiu, S. Chin. J. Chem. 2016, 34, 196.
[11] Li, W.; Peng, Q.; Xie, Y.; Zhang, T.; Shuai, Z. Acta Chim. Sinica 2016, 74, 902. (李文强, 彭谦, 谢育俊, 张天, 帅志刚, 化学学报, 2016, 74, 902.)
[12] Xu, H.; Chen, R.; Sun, Q.; Lai, W.; Su, Q.; Huang, W.; Liu, X. Chem. Soc. Rev. 2014, 43, 3259.
[13] Shi, H.; Ma, X.; Zhao, Q.; Liu, B.; Qu, Q.; An, Z.; Zhao, Y.; Huang, W. Adv. Funct. Mater. 2014, 24, 4823.
[14] Huang, Y.; Lei, L.; Zheng, C.; Wei, B.; Zhao, Z.; Qin, A.; Hu, R.; Tang, B. Acta Chim. Sinica 2016, 74, 885. (黄玉章, 雷洛奇, 郑超, 危博, 赵祖金, 秦安军, 胡蓉蓉, 唐本忠, 化学学报, 2016, 74, 885.)
[15] Peng, Z.; Wang, Z.; Tong, B.; Ji, Y.; Shi, J.; Zhi, J.; Dong, Y. Chin. J. Chem. 2016, 34, 1071.
[16] Qian, X.; Su, M.; Li, F. Acta Chim. Sinica 2016, 74, 565. (钱鑫, 苏萌, 李风煜, 化学学报, 2016, 74, 565.)
[17] Wang, C.; Xu, B.; Li, M.; Chi, Z.; Xie, Y.; Li, Q.; Li, Z. Mater. Horiz. 2016, 3, 220.
[18] Chandra, B. P.; Zink, J. I. J. Chem. Phys. 1980, 73, 5933.
[19] Hocking, M. B.; Preston, D. M.; Zink, J. I. J. Lumin. 1989, 43, 309.
[20] Li, X.; Zheng, Y.; Zuo, J.; Song, Y.; You, X. Polyhedron 2007, 26, 5257.
[21] Fontenot, R. S.; Bhat, K. N.; Hollerman, W. A.; Aggarwal, M. D.; Nguyen, K. M. CrystEngComm. 2012, 14, 1382.
[22] Nishida, J. I.; Ohura, H.; Kita, Y.; Hasegawa, H.; Kawase, T.; Takada, N.; Sato, H.; Sei, Y.; Yamashita, Y. J. Org. Chem. 2016, 81, 433.
[23] Fontenot, R. S.; Bhat, K. N.; Owens, C. A.; Hollerman, W. A.; Aggarwal, M. D. J. Lumin. 2015, 158, 428.
[24] Chen, X.; Zhu, X.; Xu, Y.; Raj, S. S. S.; Oztürk, S.; Fun, H.; Ma, J.; You, X. J. Mater. Chem. 1999, 9, 2919.
[25] Xu, S.; Liu, T.; Mu, Y.; Wang, Y.; Chi, Z.; Lo, C.; Liu, S.; Zhang, Y.; Lien, A.; Xu, J. Angew. Chem., Int. Ed. 2015, 54, 874.
[26] Fang, M.; Yang, J.; Liao, Q.; Gong, Y.; Xie, Z.; Chi, Z.; Peng, Q.; Li, Q.; Li, Z. J. Mater. Chem. C 2017, 5, 9879.
[27] Rheingold, A. L.; King, W. Inorg. Chem. 1989, 28, 1715.
[28] Chen, Y.; Spiering, A. J. H.; Karthikeyan, S.; Peters, G. W. M.; Meijer, E. W.; Sijbesma, R. P. Nat. Chem. 2012, 4, 559.
[29] Wang, M.; Guo, G.; Chen, W.; Xu, G.; Zhou, W.; Wu, K.; Huang, J. Angew. Chem., Int. Ed. 2007, 46, 3909.
[30] Wang, G.; Xu, G.; Wang, M.; Cai, L.; Li, W.; Guo, G. Chem. Sci. 2015, 6, 7222.
[31] Wang, M.; Guo, G. Chem. Commun. 2016, 52, 13194.
[32] Zhang, N.; Sun, C.; Jiang, X.; Xing, X.; Yan, Y.; Cai, L.; Wang, M.; Guo, G. C. Chem. Commun. 2017, 53, 9269.
[33] Wang, M.; Guo, S.; Li, Y.; Cai, L.; Zou, J.; Xu, G.; Zhou, W.; Zheng, F.; Guo, G. J. Am. Chem. Soc. 2009, 131, 13572.
[34] Yang, H.; Zhang, Y.; Li, Y.; Wang, J.; Li, X.; Song, J.; Zhang, B.; Feng, Y. Chin. J. Org. Chem. 2017, 37, 1991. (杨贺玮, 张宇哲, 李艳杰, 王京翔, 李小萌, 宋健, 张宝, 冯亚青, 有机化学, 2017, 37, 1991.)
[35] Mukherjee, S.; Thilagar, P. Chem. Commun. 2015, 51, 10988.
[36] Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H.; Chen, R.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26, 7931.
[37] Chen, X.; Duan, C.; Zhu, X.; You, X.; Raj, S. S. S.; Fun, H.; Wu, J. Mater. Chem. Phys. 2001, 72, 11.
[38] Xu, B.; Li, W.; He, J.; Wu, S.; Zhu, Q.; Yang, Z.; Wu, Y.; Zhang, Y.; Jin, C.; Lu, P.; Chi, Z.; Liu, S.; Xu, J.; Bryce, M. R. Chem. Sci. 2016, 7, 5307.
[39] Xu, B.; He, J.; Mu, Y.; Zhu, Q.; Wu, S.; Wang, Y.; Zhang, Y.; Jin, C.; Lo, C.; Chi, Z.; Lien, A.; Liu, S.; Xu, J. Chem. Sci. 2015, 6, 3236.
[40] Neena, K. K.; Sudhakar, P.; Dipak, K.; Thilagar, P. Chem. Commun. 2017, 53, 3641.
[41] Hirai, Y.; Nakanishi, T.; Kitagawa, Y.; Fushimi, K.; Seki, T.; Ito, H.; Hasegawa, Y. Angew. Chem., Int. Ed. 2017, 56, 7171.
[42] Eddingsaas, N. C.; Suslick, K. S. J. Am. Chem. Soc. 2007, 129, 6718.
[43] Walton, A. J. Adv. Phys. 1977, 26, 887.
[44] Cotton, F. A.; Goodgame, D. M. L.; Goodgame, M. J. Am. Chem. Soc. 1962, 84, 167.
[45] Goodgame, D. M. L.; Cotton, F. A. J. Chem. Soc. 1961, 3735.
[46] Wong, H. Y.; Lo, W. S.; Chan, W. T. K.; Law, G. L. Inorg. Chem. 2017, 56, 5135.
[47] Nakayama, H.; Nishida, J.; Takada, N.; Sato, H.; Yamashita, Y. Chem. Mater. 2012, 24, 671.
[48] Balsamy, S.; Natarajan, P.; Vedalakshmi, R.; Muralidharan, S. Inorg. Chem. 2014, 53, 6054.
[49] Fontenot, R. S.; Hollerman, W. A.; Bhat, K. N.; Aggarwal, M. D. J. Lumin. 2013, 134, 477.
[50] Li, C.; Xu, C. N.; Imai, Y.; Bu, N. Strain 2011, 47, 483.
[51] Sakai, K.; Koga, T.; Imai, Y.; Maehara, S.; Xu, C. Phys. Chem. Chem. Phys. 2006, 8, 2819.
[52] Cheng, Z.; Lin, J. Macromol. Rapid Commun. 2015, 36, 790.
[53] Xu, X.; Wang, M.; Lin, L.; Zhao, B.; He, D. Mater. Rev. 2015, 29, 61. (许晓玉, 王蒙, 林琳, 赵斌, 何丹农, 材料导报, 2015, 29, 61.)
[54] Liu, Z.; Lai, B.; Wen, H.; Robbins, J.; Nei, H. Chin. J. Chem. 2016, 34, 1304.
[55] Yang, Z.; Lin, J.; Su, M.; Tao, Z.; Wang, W. Acta Chim. Sinica 2001, 59, 736. (杨智, 林建华, 苏勉曾, 陶冶, 王渭, 化学学报, 2001, 59, 736.)
[56] Huang, J.; Hou, B.; Ling, H.; Liu, J.; Yu, X. Inorg. Chem. 2014, 53, 9541.
[57] Hurt, C. R.; Mcavoy, N.; Bjorklund, S.; Filipescu, N. N. Nature 1966, 212, 179.
[58] Sweeting, L. M.; Rheingold, A. L. J. Am. Chem. Soc. 2002, 109, 2652.
[59] Fontenot, R. S.; Hollerman, W. A.; Bhat, K. N.; Aggarwal, M. D. J. Lumin. 2012, 132, 1812.
[60] Fontenot, R. S.; Bhat, K. N.; Hollerman, W. A.; Alapati, T. R.; Aggarwal, M. D. ECS J. Solid State Sci. Technol. 2013, 2, 384.
[61] Fontenot, R. S.; Hollerman, W. A.; Bhat, K. N.; Aggarwal, M. D.; Penn, B. G. Polym. J. 2013, 46, 111.
[62] Chen, X.; Liu, S.; Yu, Z.; Cheung, K.; Ma, J.; Min, N.; You, X. J. Coord. Chem. 1999, 47, 349.
[63] Xiong, R.; You, X. Inorg. Chem. 2002, 5, 677.
[64] Chen, X.; Liu, S.; Duan, C.; Xu, Y.; You, X. Polyhedron 1998, 17, 1883.
[65] Takada, N.; Sugiyama, J.; Minami, N.; Hieda, S. Mol. Cryst. Liq. Cryst. 1997, 295, 71.
[66] Takada, N.; Hieda, S.; Sugiyama, J.; Katoh, R.; Minami, N. Synth. Met. 2000, 111, 587.
[67] Takada, N.; Sugiyama, J.; Katoh, R.; Minami, N.; Hieda, S. Synth. Met. 1997, 91, 351.
[68] Li, D.; Li, C.; Wang, J.; Kang, L.; Wu, T.; Li, Y.; You, X. Eur. J. Inorg. Chem. 2009, 2009, 4844.
[69] Rausch, J.; Lorenz, V.; Hrib, C. G.; Frettloh, V.; Adlung, M.; Wickleder, C.; Hilfert, L.; Jones, P. G.; Edelmann, F. T. Inorg. Chem. 2014, 53, 11662.
[70] George, T. M.; Sajan, M. J.; Gopakumar, N.; Reddy, M. L. P. J. Photochem. Photobiol., A 2016, 317, 88.
[71] Hasegawa, Y.; Hieda, R.; Miyata, K.; Nakagawa, T.; Kawai, T. Eur. J. Inorg. Chem. 2011, 2011, 4978.
[72] Hasegawa, Y.; Tateno, S.; Yamamoto, M.; Nakanishi, T.; Kita-gawa, Y.; Seki, T.; Ito, H.; Fushimi, K. Chem.-Eur. J. 2017, 23, 2666.
[73] Biju, S.; Gopakumar, N.; Bunzli, J. C. G.; Scopelliti, R.; Kim, H. K.; Reddy, M. L. P. Inorg. Chem. 2013, 52, 8750.
[74] Mikhalyova, E. A.; Yakovenko, A. V.; Zeller, M.; Kiskin, M. A.; Kolomzarov, Y. V.; Eremenko, I. L.; Addison, A. W.; Pavlishchuk, V. V. Inorg. Chem. 2015, 54, 3125.
[75] Wu, Z.; Huang, X. Chin. J. Chem. 2016, 34, 703
[76] Chen, J.; Zhang, Q.; Zheng, F.; Liu, Z.; Wang, S.; Wu, A.; Guo, G. Dalton Trans. 2015, 44, 3289.
[77] Chandra, B. P.; Jaiswal, A. K.; Cwandraker, T. R.; Kaza, B. R. J. Lumin. 1982, 27, 101.
[78] Chandra, B. P.; Deshmukh, N. G.; Sahu, R. B.; Verma, A. K. Cryst. Res. Technol. 1986, 21, 1559.
[79] Kobayashi, A.; Hasegawa, T.; Yoshida, M.; Kato, M. Inorg. Chem. 2016, 55, 1978.
[80] SchÖnweiz, S.; Sorsche, D.; Schwarz, B.; Rau, S.; Streb, C. Dalton Trans. 2017, 46, 9760.
[81] Knotter, D. M.; Van Maanen, H. L.; Grove, D. M.; Spek, A. L.; Van Koten, G. Inorg. Chem. 1991, 30, 3309.
[82] Knotter, D. M.; Blasse, G.; Vliet, J. P. M. V.; Koten, G. V. Inorg. Chem. 1992, 31, 2196.
[83] Incel, A.; Varlikli, C.; McMillen, C. D.; Demir, M. M. J. Phys. Chem. C 2017, 121, 11709.
[84] Tseng, C.; Fox, M. A.; Liao, J.; Ku, C.; Sie, Z.; Chang, C.; Wang, J.; Chen, Z.; Lee, G.; Chi, Y. J. Mater. Chem. C 2017, 5, 1420.
[85] Hsu, C. W.; Ly, K. T.; Lee, W. K.; Wu, C. C.; Wu, L. C.; Lee, J. J.; Lin, T. C.; Liu, S. H.; Chou, P. T.; Lee, G. H.; Chi, Y. ACS Appl. Mater. Interfaces 2016, 8, 33888.
[86] Inoue, T.; Tazuke, S. Chem. Lett. 1981, 5, 589.
[87] Nowak, R.; Krajewska, A.; Samoc, M. Chem. Phys. Lett. 1983, 94, 270.
[88] Yang, J.; Gao, X.; Xie, Z.; Gong, Y.; Fang, M.; Peng, Q.; Chi, Z.; Li, Z. Angew. Chem., Int. Ed. 2017, 56, 15299.
[89] Arivazhagan, C.; Maity, A.; Bakthavachalam, K.; Jana, A.; Panigrahi, S. K.; Suresh, E.; Das, A.; Ghosh, S. Chem.-Eur. J. 2017, 23, 7046.
[90] Xie, Y.; Tu, J.; Zhang, T.; Wang, J.; Xie, Z.; Chi, Z.; Peng, Q.; Li, Z. Chem. Commun. 2017, 53, 11330.
[91] Hardy, G. E.; Kaska, W. C.; Chandra, B. P.; Zink, J. I. J. Am. Chem. Soc. 1981, 103, 1074.
[92] Sweeting, L. M.; Rheingold, A. L. J. Phys. Chem. 1988, 92, 5648.
[93] Guo, J.; Li, X.; Nie, H.; Luo, W.; Gan, S.; Hu, S.; Hu, R.; Qin, A.; Zhao, Z.; Su, S.; Tang, B. Adv. Funct. Mater. 2017, 27, 1606458.
[94] Yang, J.; Ren, Z.; Xie, Z.; Liu, Y.; Wang, C.; Xie, Y.; Peng, Q.; Xu, B.; Tian, W.; Zhang, F.; Chi, Z.; Li, Q.; Li, Z. Angew. Chem., Int. Ed. 2017, 56, 880.
[95] Clough, J. M.; Creton, C.; Craig, S. L.; Sijbesma, R. P. Adv. Funct. Mater. 2016, 26, 9063.
[96] Chen, Y.; Sijbesma, R. P. Macromolecules 2014, 47, 3797.
/
〈 |
|
〉 |