收稿日期: 2018-02-02
网络出版日期: 2018-03-12
基金资助
项目受国家重点研发计划(No.2017YFA0207302)、国家自然科学基金(Nos.21332007,21472153,21672176)、教育部长江学者和创新团队发展计划以及中央高校基本科研业务费专项资金(No.20720170092)的资助.
Direct Transformations of Amides: Tactics and Recent Progress
Received date: 2018-02-02
Online published: 2018-03-12
Supported by
Project supported by the National Key R&D Program of China (grant No. 2017YFA0207302), the National Natural Science Foundation of China (Nos. 21332007, 21472153, 21672176), the Program for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education (P. R. China), and Chinese Universities Scientific Fund (No. 20720170092).
黄培强 . 酰胺直接转化:策略与近期进展[J]. 化学学报, 2018 , 76(5) : 357 -365 . DOI: 10.6023/A18020054
Amides are a class of easily available compounds, and widely serve as versatile intermediates in organic synthesis and medicinal chemistry. Amide-based transformations could lead to many useful compounds and intermediates including various amines, ketones and enaminones. Though direct transformation of amides is of high demand, many current chemoselective transformations are only achieved in multistep approaches. In recent years, direct transformation of amides is emerging as an exciting area. A number of recent progresses on nucleophilic addition to amide carbonyl group that led to new C—C bond formation are highlighted in this review, including (1) in situ amide activation with trifluoromethanesulfonic anhydride (Tf2O) followed by addition of π- and σ-nucleophiles or reactive organometallic reagents; (2) direct transformation of N-alkoxyamides; (3) direct transformation of amides using Schwartz reagent; and (4) catalytic reductive C—C bond forming reactions of amides, and metal catalyzed coupling of amides.
[1] Brown, R. S. In The Amide Linkage:Structural Significance in Chemistry, Biochemistry, and Materials Science, Eds.:Greenberg, A.; Breneman, C. M.; Liebman, J. F., John Wiley & Sons, Hoboken, 2000, pp. 85~114.
[2] (a) Ma, X. Y.; An, X. T.; Zhao, X. H.; Du, J. Y.; Deng, Y. H.; Zhang, X. Z.; Fan, C. A. Org. Lett. 2017, 19, 2965.
(b) Shu, C.; Li, L.; Tan, T. D.; Yuan, D. Q.; Ye, L. W. Sci. Bull. 2017, 62, 352.
(c) Kong, D. Y.; Li, M. N.; Wang, R.; Zi, G. F.; Hou, G. H. Org. Biomol. Chem. 2016, 14, 1216.
(d) Li, Y.; Li, J.; Ding, H. F.; Li, A. Natl. Sci. Rev. 2017, 4, 397.
(e) Chen, W.; Zhang, H. B. Sci. China:Chem. 2016, 59, 1065.
(f) Yu, K.; Gao, B. L.; Ding, H. F. Acta Chim. Sinica 2016, 74, 410. (余宽, 高北岭, 丁寒锋, 化学学报, 2016, 74, 410)
(g) Yu, X. Y.; Zhou, F.; Chen, J. R.; Xiao, W. J. Acta Chim. Sinica 2017, 75, 86. (余晓叶, 周帆, 陈加荣, 肖文精, 化学学报, 2017, 75, 86.)
[3] (a) Wu, Q. F.; Shen, P. X.; He, J.; Wang, X. B.; Zhang, F.; Shao, Q.; Zhu, R. Y.; Mapelli, C.; Qiao, J. X.; Poss, M. A.; Yu, J. Q. Science 2017, 355, 499.
(b) Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Science 2016, 351, 681.
(c) Luo, F. H.; Long, Y.; Li, Z. K.; Zhou, X. G. Acta Chim. Sinica 2016, 74, 805. (罗飞华, 龙洋, 李正凯, 周向葛, 化学学报, 2016, 74, 805.)
[4] For recent reviews, see:
(a) Chardon, A.; Morisset, E.; Rouden, J.; Blanchet, J. Synthesis 2018, 50, 984.
(b) Volkov, A.; Tinnis, F.; Slagbrand, T.; Trillo, P.; Adolfsson, H. Chem. Soc. Rev. 2016, 45, 6685.
(c) Zhang, L. L.; Han, Z. B.; Zhang, L. Li, M. X.; Ding, K. L. Chin. J. Org. Chem. 2016, 36, 1824. (张琳莉, 韩召斌, 张磊, 李明星, 丁奎岭, 有机化学, 2016, 36, 1824.)
(d) Smith, A. M.; Whyman, R. Chem. Rev. 2014, 114, 5477.
(e) Werkmeister, S.; Junge, K.; Beller, M. Org. Process Res. Dev. 2014, 18, 289.
(f) Addis, D.; Das, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 6004.
[5] Seyden-Penne, J. Reductions by the Alumino-and Borohydrides in Organic Synthesis, 2nd ed., Wiley-VCH, New York, 1997.
[6] Li, J.; Zhang, W. H.; Zhang, F.; Chen, Y.; Li, A. J. Am. Chem. Soc. 2017, 139, 14893. correction:J. Am. Chem. Soc. 2018, 140, 2384.
[7] (a) Mateo, P.; Cinqualbre, J.; Mojzes, M. M.; Schenk, K.; Renaud, P. J. Org. Chem. 2017, 82, 12318. See also:
(b) Murai, T.; Mutoh, Y.; Ohta, Y.; Murakami, M. J. Am. Chem. Soc. 2004, 126, 5968. For a review, see:
(c) Murai, T.; Mutoh, Y. Chem. Lett. 2012, 41, 2.
[8] (a) Abels, F.; Lindemann, C.; Koch, E.; Schneider, C. Org. Lett. 2012, 14, 5972.
(b) Abels, F.; Lindemann, C.; Schneider, C. Chem.-Eur. J. 2014, 20, 1964.
[9] Lee, A. S.; Liau, B. B.; Shair, M. D. J. Am. Chem. Soc. 2014, 136, 13442.
[10] Michael, J. P.; de Koning, C. B.; Gravestock, D.; Hosken, G. D.; Howard, A. S.; Jungmann, C. M.; Krause, R. W. M.; Parsons, A. S.; Pelly, S. C.; Stanbury, T. V. Pure Appl. Chem. 1999, 71, 979.
[11] Hussaini, S. R.; Chamala, R. R.; Wang, Z. Tetrahedron 2015, 71, 6017.
[12] For reviews, see:
(a) Seebach, D. Angew. Chem., Int. Ed. 2011, 50, 96.
(b) Pace, V.; Holzer, W. Aust. J. Chem. 2013, 66, 507.
(c) Pace, V.; Holzer, W.; Olofsson, B. Adv. Synth. Catal. 2014, 356, 3697.
(d) Sato, T.; Chida, N. Org. Biomol. Chem. 2014, 12, 3147.
(e) Kaiser, D.; Maulide, N. J. Org. Chem. 2016, 81, 4421.
(f) Sato, T.; Chida, N. J. Synth. Org. Chem. Jpn. 2016, 74, 599.
(g) Li, X. J.; Sun, Y.; Zhang L.; Peng, B. Chin. J. Org. Chem. 2016, 36, 2530(李晓锦, 孙艳, 张磊, 彭勃, 有机化学, 2016, 36, 2530).
(h) Evano, G.; Lecomte, M.; Thilmany, P.; Theunissen, C. Synthesis 2017, 49, 3183.
(i) Adachi, S.; Kumagai, N.; Shibasaki, M. Tetrahedron Lett. 2018, 59, 1147.
[13] (a) Stang, P. J.; White, M. R. Aldrichim. Acta 1983, 16, 15.
(b) Baraznenok, I. L.; Nenajdenko, V. G.; Balenkova, E. S. Tetrahedron 2000, 56, 3077. For an excellent mechanistic investigation on the role of base additive in conjuction with Tf2O, see:
(c) Mátravölgyi, B.; Hergert, T.; Bálint, E.; Bagi, P.; Faigl, F. J. Org. Chem. 2018, 83, 2282.
[14] (a) Falmagne, J. B.; Escudero, J.; Talebsahraoui, S.; Ghosez, L. Angew. Chem. Int. Ed. Engl. 1981, 20, 879.
(b) Chen, L. Y.; Ghosez, L. Tetrahedron Lett. 1990, 31, 4467.
[15] Martinez, A. G.; Alvarez, R. M.; Barcina, J. O.; Cerero, S. M.; Vilar, E. T.; Fraile, A. G.; Hanack, M.; Subramanian, L. R. J. Chem. Soc., Chem. Commun. 1990, 1571.
[16] Sisti, N. J.; Fowler, F. W.; Grierson, D. S. Synlett 1991, 816.
[17] Banwell, M. G.; Cowden, C. J.; Gable, R. W. J. Chem. Soc., Perkin Trans. 1 1994, 3515.
[18] Myers, A. G.; Tom, N. J.; Fraley, M. E.; Cohen, S. B.; Madar, D. J. J. Am. Chem. Soc. 1997, 119, 6072.
[19] (a) Magnus, P.; Gazzard, L.; Hobson, L.; Payne, A. H.; Lynch, V. Tetrahedron Lett. 1999, 40, 5135.
(b) Magnus, P.; Gazzard, L.; Hobson, L.; Payne, A. H.; Rainey, T. J.; Westlund, N.; Lynch, V. Tetrahedron 2002, 58, 3423.
[20] (a) Bélanger, G.; Larouche-Gauthier, R.; Ménard, F.; Nantel, M.; Barabé, F. Org. Lett. 2005, 7, 4431.
(b) Bélanger, G.; Larouche-Gauthier, R.; Ménard, F.; Nantel, M.; Barabé, F. J. Org. Chem. 2006, 71, 704.
[21] (a) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592.
(b) Movassaghi, M.; Hill, M. D.; Ahmad, O. K. J. Am. Chem. Soc. 2007, 129, 10096.
[22] Hendrickson, J. B.; Hussoin, M. D. J. Org. Chem. 1987, 52, 4137.
[23] (a) You, S. L.; Razavi, H.; Kelly, J. W. Angew. Chem., Int. Ed. 2003, 42, 83;
(b) You, S.-L.; Kelly, J. W. Org. Lett. 2004, 6, 1681.
[24] (a) Zhou, H. B.; Liu, G. S.; Yao, Z. J. Org. Lett. 2007, 9, 2003.
(b) Atia, M.; Bogdán, D.; Brügger, M.; Haider, N.; Mátyus, P. Tetrahedron 2017, 73, 3231.
(c) Dong, Q. L.; Liu, G. S.; Zhou, H. B.; Chen, L.; Yao, Z. J. Tetrahedron Lett. 2008, 49, 1636.
[25] Movassaghi, M.; Hill, M. D. Org. Lett. 2008, 10, 3485.
[26] Cui, S. L.; Wang, J.; Wang, Y. G. J. Am. Chem. Soc. 2008, 130, 13526.
[27] Medley, J. W.; Movassaghi, M. J. Org. Chem. 2009, 74, 1341.
[28] (a) White, K. L.; Mewald, M.; Movassaghi, M. J. Org. Chem. 2015, 80, 7403.
(b) Mewald, M.; Medley, J. W.; Movassaghi, M. Angew. Chem., Int. Ed. 2014, 53, 11634.
[29] (a) Handbook of Grignard Reagents, Eds.:Silverman, G. S.; Rakita, P. E., Marcel Dekker, New York, 1996;
(b) Grignard Reagent:New Developments, Ed.:Richey, H. G. Jr., Wiley, Chichester, 2000;
(c) Main Group Metals in Organic Synthesis, Eds.:Yamamoto, H.; Oshima, K., Wiley-VCH, Weinheim, 2004;
(d) Handbook of Functionalized Organometallics Application in Synthesis, Ed.:Knochel, P., Wiley-VCH, Weinheim, 2005;
(e) Klatt, T.; Markiewicz, J. T.; Sämann, C.; Knochel, P. J. Org. Chem. 2014, 79, 4253;
(f) Bao, R. L.-Y.; Zhao, R.; Shi, L. Chem. Commun. 2015, 51, 6884, correction:Chem. Commun. 2015, 51, 9744.
[30] (a) Foubelo, F.; Yus, M. Chem. Soc. Rev. 2008, 37, 2620;
(b) Chinchilla, R.; Nájera, C.; Yus, M. Tetrahedron 2005, 61, 3139;
(c) The Chemistry of Organolithium Compounds, Eds.:Rappoport, Z.; Marek, I., Wiley-VCH, Weinheim, 2004.
[31] (a) Xiao, K.-J.; Luo, J.-M.; Ye, K.-Y.; Wang, Y.; Huang, P.-Q. Angew. Chem., Int. Ed. 2010, 49, 3037.
(b) Huo, H.-H.; Luo, J.-M.; Xia, X.-E.; Zhang, H.-K.; Wang, Y.; Huang, P.-Q. Chem. Eur. J. 2013, 19, 13075.
[32] (a) Xiao, K.-J.; Wang, Y.; Ye, K.-Y.; Huang, P.-Q. Chem. Eur. J. 2010, 16, 12792.
(b) Xiao, K.-J.; Wang, Y.; Huang, Y.-H.; Wang, X.-G.; Huang, P.-Q. J. Org. Chem. 2013, 78, 8305.
[33] (a) Guérot, C.; Tchitchanov, B. H.; Knust, H.; Carreira, E. M. Org. Lett. 2011, 13, 780.
(b) Lindemann, C.; Schneider, C. Synthesis 2016, 48, 828.
[34] (a) Huo, H.-H.; Xia, X.-E.; Zhang, H.-K.; Huang, P.-Q. J. Org. Chem. 2013, 78, 455.
(b) Huang, P.-Q.; Geng, H.; Tian, Y.-S.; Peng, Q.-R.; Xiao, K.-J. Sci. China:Chem. 2015, 58, 478.
[35] Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228.
[36] (a) Xiao, K.-J.; Wang, A.-E; Huang, Y.-H.; Huang, P.-Q. Asian J. Org. Chem. 2012, 1, 130.
(b) Huang, P.-Q.; Huang, Y.-H.; Geng, H.; Ye, J.-L. Sci. Rep. 2016, 6, 28801.
(c) Huang, P.-Q.; Huang, Y.-H. Chin. J. Chem. 2017, 35, 613.
[37] Xiao, K.-J.; Wang, A.-E; Huang, P.-Q. Angew. Chem. Int. Ed. 2012, 51, 8314.
[38] Huang, P.-Q.; Ou, W.; Xiao, K.-J.; Wang, A.-E Chem. Commun. 2014, 50, 8761.
[39] Huang, P.-Q.; Wang, Y.; Xiao, K.-J.; Huang, Y.-H. Tetrahedron 2015, 71, 4248.
[40] (a) Castoldi, L.; Holzer, W.; Langer, T.; Pace, V. Chem. Commun. 2017, 53, 9498.
(b) Pace, V.; Murgia, I.; Westermayer, S.; Langer, T.; Holzer, W. Chem. Commun. 2016, 52, 7584.
[41] (a) Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Angew. Chem. Int. Ed. 2010, 49, 6369.
(b) Yoritate, M.; Meguro, T.; Matsuo, N.; Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Chem. Eur. J. 2014, 20, 8210. See also:
(c) Jaekel, M.; Qu, J.; Schnitzer, T.; Helmchen, G. Chem. Eur. J. 2013, 19, 16746.
[42] (a) Vincent, G.; Guillot, R.; Kouklovsky, C. Angew. Chem. Int. Ed. 2011, 50, 1350.
(b) Vincent, G.; Karila, D.; Khalil, G.; Sancibrao, P.; Gori, D.; Kouklovsky, C. Chem.-Eur. J. 2013, 19, 9358.
[43] (a) Schedler, D. J. A.; Godfrey, A. G.; Ganem, B. Tetrahedron Lett. 1993, 34, 5035.
(b) Schedler, D. J. A.; Li, J.; Ganem, B. J. Org. Chem. 1996, 61, 4115.
(c) Xia, Q.; Ganem, B. Org. Lett. 2001, 3, 485.
[44] (a) Nakajima, M.; Oda, Y.; Wada, T.; Minamikawa, R.; Shirokane, K.; Sato, T.; Chida, N. Chem. Eur. J. 2014, 20, 17565.
(b) Oda, Y.; Sato, T.; Chida, N. Org. Lett. 2012, 14, 950.
(c) Shirokane, K.; Wada, T.; Yoritate, M.; Minamikawa, R.; Takayama, N.; Sato, T.; Chida, N. Angew. Chem. Int. Ed. 2014, 53, 512.
(d) Fukami, Y.; Wada, T.; Meguro, T.; Chida, N.; Sato, T. Org. Biomol. Chem. 2016, 14, 5486.
(e) Shirokane, K.; Tanaka, Y.; Yoritate, M.; Takayama, N. Sato, T.; Chida, N. Bull. Chem. Soc. Jpn. 2015, 88, 522. See also:
(f) Pace, V.; Vega-Hernández, K. de la; Urban, E.; Langer, T. Org. Lett. 2016, 18, 2750.
[45] Wieclaw, M. M.; Stecko, S. Eur. J. Org. Chem. 2018, DOI:10.1002/ejoc.201701537
[46] Motoyama, Y.; Aoki, M.; Takaoka, N.; Aoto, R.; Nagashima, H. Chem. Commun. 2009, 1574.
[47] (a) Gregory, A. W.; Chambers, A.; Hawkins, P.; Jakubec, A.; Dixon, D. J. Chem.-Eur. J. 2015, 21, 111.
(b) Tan, P. W.; Seayad, J.; Dixon, D. J. Angew. Chem. Int. Ed. 2016, 55, 13436.
[48] (a) Nakajima, M.; Sato, T.; Chida, N. Org. Lett. 2015, 17, 1696.
(b) Katahara, S.; Kobayashi, S.; Fujita, K.; Matsumoto, T.; Sato, T.; Chida, N. J. Am. Chem. Soc. 2016, 138, 5246.
(c) Katahara, S.; Kobayashi, S.; Fujita, K.; Matsumoto, T.; Sato, T.; Chida, N. Bull. Chem. Soc. Jpn. 2017, 90, 893.
[49] Huang, P.-Q.; Ou, W.; Han, F. Chem. Commun. 2016, 52, 11967.
[50] (a) Fuentes de Arriba, A. L.; Lenci, E.; Sonawane, M.; Formery, O.; Dixon, D. J. Angew. Chem. Int. Ed. 2017, 56, 3655.
(b) Xie, L. G.; Dixon, D. J. Chem. Sci. 2017, 8, 7492.
[51] (a) Tinnis, F.; Volkov, A.; Slagbrand, T.; Adolfsson, H. Angew. Chem., Int. Ed. 2016, 55, 4562.
(b) Slagbrand, T.; Kervefors, G.; Tinnis. F.; Adolfsson, H. Adv. Synth. Catal. 2017, 359, 1990.
(c) Trillo, P.; Slagbrand, T.; Tinnis F.; Adolfsson, H. Chem. Commun. 2017, 53, 9159.
[52] Hie, L.; Fine Nathel, N. F.; Shah, T.; Baker, E. L.; Hong, X.; Yang, Y. F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015, 524, 79.
[53] Ritter, S. K. Chem. Eng. News 2015, 93(49), 23.
[54] (a) Ritter, S. K. Chem. Eng. News Archive 2015, 93(30), 9.
(b) Ruider, S. A.; Maulide, N. Angew. Chem. Int. Ed. 2015, 54, 13856.
[55] Weires, N. A.; Baker, E. L.; Garg, N. K. Nat. Chem. 2016, 8, 75.
[56] Meng, G.; Szostak, R.; Szostak, M. Org. Lett. 2017, 19, 3596.
[57] Huang, P.-Q.; Chen, H. Chem. Commun. 2017, 53, 12584.
[58] (a) Kaiser, D.; Teskey, C. J.; Adler, P.; Maulide, N. J. Am. Chem. Soc. 2017, 139, 16040.
(b) Shaaban, S.; Tona, V.; Peng, B.; Maulide, N. Angew. Chem. Int. Ed. 2017, 56, 10938.
(c) Torre, A.; Kaiser, D.; Maulide, N. J. Am. Chem. Soc. 2017, 139, 6578.
(d) Kaiser, D.; de la Torre, A.; Shaaban, S.; Maulide, N. Angew. Chem., Int. Ed. 2017, 56, 5921.
(e) Mauro, G. D.; Maryasin, B.; Kaiser, D.; Shaaban, S.; González, L.; Maulide, N. Org. Lett. 2017, 19, 3815.
(f) Tona, V.; Maryasin, B.; de la Torre, A.; Sprachmann, J.; González, L.; Maulide, N. Org. Lett. 2017, 19, 2662.
(g) Gawali, V. S.; Simeonov, S.; Drescher, M.; Knott, T.; Scheel, O.; Kudolo, J.; Kählig, H.; Hochenegg, K.; Hochenegg, U.; Roller, A.; Todt, H.; Maulide, N. ChemMedChem 2017, 12, 1819.
(h) Peng, B.; Geerdink, D.; Fares, C.; Maulide, N. Angew. Chem. Int. Ed. 2014, 53, 5462.
[59] (a) Xiao, P. H.; Tang, Z. X.; Wang, K.; Chen, H.; Guo, Q. Y.; Chu, Y.; Gao, L.; Song, Z. L. J. Org. Chem. 2018, 83, 1687.
(b) Li, L. H.; Niu, Z. J.; Liang, Y. M. Chem. Eur. J. 2017, 23, 15300.
(c) Li, X. W.; Lin, F. G. R.; Huang, K. M.; Wei, J. L.; Li, X. Y.; Wang, X. Y.; Geng, X. Y.; Jiao, N. Angew. Chem. Int. Ed. 2017, 56, 12307.
(d) Xie, C. M.; Luo, J. S.; Zhang, Y.; Zhu, L. L.; Hong, R. Org. Lett. 2017, 19, 3592.
(e) Chen, J. J.; Long, W. H.; Fang, S. W.; Yang, Y. G.; Wan, X. B. Chem. Commun. 2017, 53, 13256.
(f) Ding, G. N.; Wu, X. Y.; Jiang, L. L.; Zhang, Z. G.; Xie, X. M. Org. Lett. 2017, 19, 6048.
(g) Zhang, Q.; Yuan, J. W.; Yu, M. F.; Zhang, R.; Liang, Y. J.; Huang, P.; Dong, D. W. Synthesis 2017, 49, 4996.
(h) Jiang Meng, J.; Jia, R.; Leng, J.; Wen, M.; Yu, X.; Deng, W.-P. Org. Lett. 2017, 19, 4520.
(i) Shi, L.; Tan, X.; Long, J.; Xiong, X.; Yang, S.; Xue, P.; Lv, H.; Zhang, X. Chem.-Eur. J. 2017, 23, 546.
(j) Yuan, M. L.; Xie, J. H.; Zhou, Q. L. ChemCatChem 2016, 8, 3036.
(k) Yuan, M. L.; Xie, J. H.; Zhu, S. F.; Zhou, Q. L. ACS Catal. 2016, 6, 3665.
(l) Xing, S. Y.; Ren, J.; Wang, K.; Cui, H.; Xia, T.; Zhang, M.; Wang, D. D. Adv. Synth. Catal. 2016, 358, 3093.
(m) Lang, Q.-W.; Hu, X.-N.; Huang, P.-Q. Sci. China:Chem. 2016, 59, 1638.
(n) Mou, X. Q.; Xu, L.; Wang, S. H.; Yang, C. Tetrahedron Lett. 2015, 56, 2820.
(o) Zhang, T. X.; Zhang, Y.; Zhang, W. X.; Luo, M.-M. Adv. Synth. Catal. 2013, 355, 2775.
(p) Xie, W.; Zhao, M.; Cui, C. Organometallics 2013, 32, 7440.
(q) Zhao, M. N.; Ren, Z. H.; Wang, Y. Y.; Guan, Z. H. Chem. Commun. 2012, 48, 8105.
/
〈 |
|
〉 |