综述

酰胺直接转化:策略与近期进展

  • 黄培强
展开
  • 福建省化学生物学重点实验室 能源材料化学协同创新中心 厦门大学化学化工学院化学系 厦门 361005
黄培强,厦门大学教授.1982年毕业于厦门大学化学系,1987获法国南巴黎大学博士学位.中科院上海有机化学研究所博士后. 主要从事有机合成方法学,天然产物全合成,及化学生物学研究.发表论文愈220篇.英国皇家化学会Fellow(2006年). 获原国家教委霍英东青年教师基金(1992年)和国家杰出青年科学基金(1996年).入选新世纪百千万人才工程国家级人选(2006年).先后获得香港"求是"科技基金会"杰出青年学者奖",中国化学会有机化学学科委员会有机合成贡献奖,福建卢嘉锡教育基金会优秀导师奖,2017年教育部自然科学奖二等奖(第一完成人).Eur. J. Org. Chem.,Curr. Org. Synth.,Sci. China-Chem.,Chin. J. Chem.,化学学报,Chin. Chem. Lett.等刊物编委或国际顾问委员会委员.有机化学副主编.

收稿日期: 2018-02-02

  网络出版日期: 2018-03-12

基金资助

项目受国家重点研发计划(No.2017YFA0207302)、国家自然科学基金(Nos.21332007,21472153,21672176)、教育部长江学者和创新团队发展计划以及中央高校基本科研业务费专项资金(No.20720170092)的资助.

Direct Transformations of Amides: Tactics and Recent Progress

  • Huang Pei-Qiang
Expand
  • Department of Chemistry, Fujian Provincial Key Laboratory of Chemical Biology, iChEM(Collaborative Innovation Center of Chemistry for Energy Materials), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China

Received date: 2018-02-02

  Online published: 2018-03-12

Supported by

Project supported by the National Key R&D Program of China (grant No. 2017YFA0207302), the National Natural Science Foundation of China (Nos. 21332007, 21472153, 21672176), the Program for Changjiang Scholars and Innovative Research Team in University of the Ministry of Education (P. R. China), and Chinese Universities Scientific Fund (No. 20720170092).

摘要

以酰胺直接转化的C—C键形成方法为主线,简要回顾近年取得的主要突破.内容涵盖基于三氟甲磺酸酐活化、化学选择性试剂的还原官能化策略,以及两类催化转化.这些重要进展表明温和条件下的酰胺转化可达到优异的化学选择性、官能团容忍性和较好的底物普适性,转化产物还包括多种官能化的胺、酮和烯胺酯(酮)化合物等,并已在天然产物和生理活性化合物的合成中得到应用与检验.

本文引用格式

黄培强 . 酰胺直接转化:策略与近期进展[J]. 化学学报, 2018 , 76(5) : 357 -365 . DOI: 10.6023/A18020054

Abstract

Amides are a class of easily available compounds, and widely serve as versatile intermediates in organic synthesis and medicinal chemistry. Amide-based transformations could lead to many useful compounds and intermediates including various amines, ketones and enaminones. Though direct transformation of amides is of high demand, many current chemoselective transformations are only achieved in multistep approaches. In recent years, direct transformation of amides is emerging as an exciting area. A number of recent progresses on nucleophilic addition to amide carbonyl group that led to new C—C bond formation are highlighted in this review, including (1) in situ amide activation with trifluoromethanesulfonic anhydride (Tf2O) followed by addition of π- and σ-nucleophiles or reactive organometallic reagents; (2) direct transformation of N-alkoxyamides; (3) direct transformation of amides using Schwartz reagent; and (4) catalytic reductive C—C bond forming reactions of amides, and metal catalyzed coupling of amides.

参考文献

[1] Brown, R. S. In The Amide Linkage:Structural Significance in Chemistry, Biochemistry, and Materials Science, Eds.:Greenberg, A.; Breneman, C. M.; Liebman, J. F., John Wiley & Sons, Hoboken, 2000, pp. 85~114.
[2] (a) Ma, X. Y.; An, X. T.; Zhao, X. H.; Du, J. Y.; Deng, Y. H.; Zhang, X. Z.; Fan, C. A. Org. Lett. 2017, 19, 2965.
(b) Shu, C.; Li, L.; Tan, T. D.; Yuan, D. Q.; Ye, L. W. Sci. Bull. 2017, 62, 352.
(c) Kong, D. Y.; Li, M. N.; Wang, R.; Zi, G. F.; Hou, G. H. Org. Biomol. Chem. 2016, 14, 1216.
(d) Li, Y.; Li, J.; Ding, H. F.; Li, A. Natl. Sci. Rev. 2017, 4, 397.
(e) Chen, W.; Zhang, H. B. Sci. China:Chem. 2016, 59, 1065.
(f) Yu, K.; Gao, B. L.; Ding, H. F. Acta Chim. Sinica 2016, 74, 410. (余宽, 高北岭, 丁寒锋, 化学学报, 2016, 74, 410)
(g) Yu, X. Y.; Zhou, F.; Chen, J. R.; Xiao, W. J. Acta Chim. Sinica 2017, 75, 86. (余晓叶, 周帆, 陈加荣, 肖文精, 化学学报, 2017, 75, 86.)
[3] (a) Wu, Q. F.; Shen, P. X.; He, J.; Wang, X. B.; Zhang, F.; Shao, Q.; Zhu, R. Y.; Mapelli, C.; Qiao, J. X.; Poss, M. A.; Yu, J. Q. Science 2017, 355, 499.
(b) Kainz, Q. M.; Matier, C. D.; Bartoszewicz, A.; Zultanski, S. L.; Peters, J. C.; Fu, G. C. Science 2016, 351, 681.
(c) Luo, F. H.; Long, Y.; Li, Z. K.; Zhou, X. G. Acta Chim. Sinica 2016, 74, 805. (罗飞华, 龙洋, 李正凯, 周向葛, 化学学报, 2016, 74, 805.)
[4] For recent reviews, see:
(a) Chardon, A.; Morisset, E.; Rouden, J.; Blanchet, J. Synthesis 2018, 50, 984.
(b) Volkov, A.; Tinnis, F.; Slagbrand, T.; Trillo, P.; Adolfsson, H. Chem. Soc. Rev. 2016, 45, 6685.
(c) Zhang, L. L.; Han, Z. B.; Zhang, L. Li, M. X.; Ding, K. L. Chin. J. Org. Chem. 2016, 36, 1824. (张琳莉, 韩召斌, 张磊, 李明星, 丁奎岭, 有机化学, 2016, 36, 1824.)
(d) Smith, A. M.; Whyman, R. Chem. Rev. 2014, 114, 5477.
(e) Werkmeister, S.; Junge, K.; Beller, M. Org. Process Res. Dev. 2014, 18, 289.
(f) Addis, D.; Das, S.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2011, 50, 6004.
[5] Seyden-Penne, J. Reductions by the Alumino-and Borohydrides in Organic Synthesis, 2nd ed., Wiley-VCH, New York, 1997.
[6] Li, J.; Zhang, W. H.; Zhang, F.; Chen, Y.; Li, A. J. Am. Chem. Soc. 2017, 139, 14893. correction:J. Am. Chem. Soc. 2018, 140, 2384.
[7] (a) Mateo, P.; Cinqualbre, J.; Mojzes, M. M.; Schenk, K.; Renaud, P. J. Org. Chem. 2017, 82, 12318. See also:
(b) Murai, T.; Mutoh, Y.; Ohta, Y.; Murakami, M. J. Am. Chem. Soc. 2004, 126, 5968. For a review, see:
(c) Murai, T.; Mutoh, Y. Chem. Lett. 2012, 41, 2.
[8] (a) Abels, F.; Lindemann, C.; Koch, E.; Schneider, C. Org. Lett. 2012, 14, 5972.
(b) Abels, F.; Lindemann, C.; Schneider, C. Chem.-Eur. J. 2014, 20, 1964.
[9] Lee, A. S.; Liau, B. B.; Shair, M. D. J. Am. Chem. Soc. 2014, 136, 13442.
[10] Michael, J. P.; de Koning, C. B.; Gravestock, D.; Hosken, G. D.; Howard, A. S.; Jungmann, C. M.; Krause, R. W. M.; Parsons, A. S.; Pelly, S. C.; Stanbury, T. V. Pure Appl. Chem. 1999, 71, 979.
[11] Hussaini, S. R.; Chamala, R. R.; Wang, Z. Tetrahedron 2015, 71, 6017.
[12] For reviews, see:
(a) Seebach, D. Angew. Chem., Int. Ed. 2011, 50, 96.
(b) Pace, V.; Holzer, W. Aust. J. Chem. 2013, 66, 507.
(c) Pace, V.; Holzer, W.; Olofsson, B. Adv. Synth. Catal. 2014, 356, 3697.
(d) Sato, T.; Chida, N. Org. Biomol. Chem. 2014, 12, 3147.
(e) Kaiser, D.; Maulide, N. J. Org. Chem. 2016, 81, 4421.
(f) Sato, T.; Chida, N. J. Synth. Org. Chem. Jpn. 2016, 74, 599.
(g) Li, X. J.; Sun, Y.; Zhang L.; Peng, B. Chin. J. Org. Chem. 2016, 36, 2530(李晓锦, 孙艳, 张磊, 彭勃, 有机化学, 2016, 36, 2530).
(h) Evano, G.; Lecomte, M.; Thilmany, P.; Theunissen, C. Synthesis 2017, 49, 3183.
(i) Adachi, S.; Kumagai, N.; Shibasaki, M. Tetrahedron Lett. 2018, 59, 1147.
[13] (a) Stang, P. J.; White, M. R. Aldrichim. Acta 1983, 16, 15.
(b) Baraznenok, I. L.; Nenajdenko, V. G.; Balenkova, E. S. Tetrahedron 2000, 56, 3077. For an excellent mechanistic investigation on the role of base additive in conjuction with Tf2O, see:
(c) Mátravölgyi, B.; Hergert, T.; Bálint, E.; Bagi, P.; Faigl, F. J. Org. Chem. 2018, 83, 2282.
[14] (a) Falmagne, J. B.; Escudero, J.; Talebsahraoui, S.; Ghosez, L. Angew. Chem. Int. Ed. Engl. 1981, 20, 879.
(b) Chen, L. Y.; Ghosez, L. Tetrahedron Lett. 1990, 31, 4467.
[15] Martinez, A. G.; Alvarez, R. M.; Barcina, J. O.; Cerero, S. M.; Vilar, E. T.; Fraile, A. G.; Hanack, M.; Subramanian, L. R. J. Chem. Soc., Chem. Commun. 1990, 1571.
[16] Sisti, N. J.; Fowler, F. W.; Grierson, D. S. Synlett 1991, 816.
[17] Banwell, M. G.; Cowden, C. J.; Gable, R. W. J. Chem. Soc., Perkin Trans. 1 1994, 3515.
[18] Myers, A. G.; Tom, N. J.; Fraley, M. E.; Cohen, S. B.; Madar, D. J. J. Am. Chem. Soc. 1997, 119, 6072.
[19] (a) Magnus, P.; Gazzard, L.; Hobson, L.; Payne, A. H.; Lynch, V. Tetrahedron Lett. 1999, 40, 5135.
(b) Magnus, P.; Gazzard, L.; Hobson, L.; Payne, A. H.; Rainey, T. J.; Westlund, N.; Lynch, V. Tetrahedron 2002, 58, 3423.
[20] (a) Bélanger, G.; Larouche-Gauthier, R.; Ménard, F.; Nantel, M.; Barabé, F. Org. Lett. 2005, 7, 4431.
(b) Bélanger, G.; Larouche-Gauthier, R.; Ménard, F.; Nantel, M.; Barabé, F. J. Org. Chem. 2006, 71, 704.
[21] (a) Movassaghi, M.; Hill, M. D. J. Am. Chem. Soc. 2006, 128, 4592.
(b) Movassaghi, M.; Hill, M. D.; Ahmad, O. K. J. Am. Chem. Soc. 2007, 129, 10096.
[22] Hendrickson, J. B.; Hussoin, M. D. J. Org. Chem. 1987, 52, 4137.
[23] (a) You, S. L.; Razavi, H.; Kelly, J. W. Angew. Chem., Int. Ed. 2003, 42, 83;
(b) You, S.-L.; Kelly, J. W. Org. Lett. 2004, 6, 1681.
[24] (a) Zhou, H. B.; Liu, G. S.; Yao, Z. J. Org. Lett. 2007, 9, 2003.
(b) Atia, M.; Bogdán, D.; Brügger, M.; Haider, N.; Mátyus, P. Tetrahedron 2017, 73, 3231.
(c) Dong, Q. L.; Liu, G. S.; Zhou, H. B.; Chen, L.; Yao, Z. J. Tetrahedron Lett. 2008, 49, 1636.
[25] Movassaghi, M.; Hill, M. D. Org. Lett. 2008, 10, 3485.
[26] Cui, S. L.; Wang, J.; Wang, Y. G. J. Am. Chem. Soc. 2008, 130, 13526.
[27] Medley, J. W.; Movassaghi, M. J. Org. Chem. 2009, 74, 1341.
[28] (a) White, K. L.; Mewald, M.; Movassaghi, M. J. Org. Chem. 2015, 80, 7403.
(b) Mewald, M.; Medley, J. W.; Movassaghi, M. Angew. Chem., Int. Ed. 2014, 53, 11634.
[29] (a) Handbook of Grignard Reagents, Eds.:Silverman, G. S.; Rakita, P. E., Marcel Dekker, New York, 1996;
(b) Grignard Reagent:New Developments, Ed.:Richey, H. G. Jr., Wiley, Chichester, 2000;
(c) Main Group Metals in Organic Synthesis, Eds.:Yamamoto, H.; Oshima, K., Wiley-VCH, Weinheim, 2004;
(d) Handbook of Functionalized Organometallics Application in Synthesis, Ed.:Knochel, P., Wiley-VCH, Weinheim, 2005;
(e) Klatt, T.; Markiewicz, J. T.; Sämann, C.; Knochel, P. J. Org. Chem. 2014, 79, 4253;
(f) Bao, R. L.-Y.; Zhao, R.; Shi, L. Chem. Commun. 2015, 51, 6884, correction:Chem. Commun. 2015, 51, 9744.
[30] (a) Foubelo, F.; Yus, M. Chem. Soc. Rev. 2008, 37, 2620;
(b) Chinchilla, R.; Nájera, C.; Yus, M. Tetrahedron 2005, 61, 3139;
(c) The Chemistry of Organolithium Compounds, Eds.:Rappoport, Z.; Marek, I., Wiley-VCH, Weinheim, 2004.
[31] (a) Xiao, K.-J.; Luo, J.-M.; Ye, K.-Y.; Wang, Y.; Huang, P.-Q. Angew. Chem., Int. Ed. 2010, 49, 3037.
(b) Huo, H.-H.; Luo, J.-M.; Xia, X.-E.; Zhang, H.-K.; Wang, Y.; Huang, P.-Q. Chem. Eur. J. 2013, 19, 13075.
[32] (a) Xiao, K.-J.; Wang, Y.; Ye, K.-Y.; Huang, P.-Q. Chem. Eur. J. 2010, 16, 12792.
(b) Xiao, K.-J.; Wang, Y.; Huang, Y.-H.; Wang, X.-G.; Huang, P.-Q. J. Org. Chem. 2013, 78, 8305.
[33] (a) Guérot, C.; Tchitchanov, B. H.; Knust, H.; Carreira, E. M. Org. Lett. 2011, 13, 780.
(b) Lindemann, C.; Schneider, C. Synthesis 2016, 48, 828.
[34] (a) Huo, H.-H.; Xia, X.-E.; Zhang, H.-K.; Huang, P.-Q. J. Org. Chem. 2013, 78, 455.
(b) Huang, P.-Q.; Geng, H.; Tian, Y.-S.; Peng, Q.-R.; Xiao, K.-J. Sci. China:Chem. 2015, 58, 478.
[35] Bechara, W. S.; Pelletier, G.; Charette, A. B. Nat. Chem. 2012, 4, 228.
[36] (a) Xiao, K.-J.; Wang, A.-E; Huang, Y.-H.; Huang, P.-Q. Asian J. Org. Chem. 2012, 1, 130.
(b) Huang, P.-Q.; Huang, Y.-H.; Geng, H.; Ye, J.-L. Sci. Rep. 2016, 6, 28801.
(c) Huang, P.-Q.; Huang, Y.-H. Chin. J. Chem. 2017, 35, 613.
[37] Xiao, K.-J.; Wang, A.-E; Huang, P.-Q. Angew. Chem. Int. Ed. 2012, 51, 8314.
[38] Huang, P.-Q.; Ou, W.; Xiao, K.-J.; Wang, A.-E Chem. Commun. 2014, 50, 8761.
[39] Huang, P.-Q.; Wang, Y.; Xiao, K.-J.; Huang, Y.-H. Tetrahedron 2015, 71, 4248.
[40] (a) Castoldi, L.; Holzer, W.; Langer, T.; Pace, V. Chem. Commun. 2017, 53, 9498.
(b) Pace, V.; Murgia, I.; Westermayer, S.; Langer, T.; Holzer, W. Chem. Commun. 2016, 52, 7584.
[41] (a) Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Angew. Chem. Int. Ed. 2010, 49, 6369.
(b) Yoritate, M.; Meguro, T.; Matsuo, N.; Shirokane, K.; Kurosaki, Y.; Sato, T.; Chida, N. Chem. Eur. J. 2014, 20, 8210. See also:
(c) Jaekel, M.; Qu, J.; Schnitzer, T.; Helmchen, G. Chem. Eur. J. 2013, 19, 16746.
[42] (a) Vincent, G.; Guillot, R.; Kouklovsky, C. Angew. Chem. Int. Ed. 2011, 50, 1350.
(b) Vincent, G.; Karila, D.; Khalil, G.; Sancibrao, P.; Gori, D.; Kouklovsky, C. Chem.-Eur. J. 2013, 19, 9358.
[43] (a) Schedler, D. J. A.; Godfrey, A. G.; Ganem, B. Tetrahedron Lett. 1993, 34, 5035.
(b) Schedler, D. J. A.; Li, J.; Ganem, B. J. Org. Chem. 1996, 61, 4115.
(c) Xia, Q.; Ganem, B. Org. Lett. 2001, 3, 485.
[44] (a) Nakajima, M.; Oda, Y.; Wada, T.; Minamikawa, R.; Shirokane, K.; Sato, T.; Chida, N. Chem. Eur. J. 2014, 20, 17565.
(b) Oda, Y.; Sato, T.; Chida, N. Org. Lett. 2012, 14, 950.
(c) Shirokane, K.; Wada, T.; Yoritate, M.; Minamikawa, R.; Takayama, N.; Sato, T.; Chida, N. Angew. Chem. Int. Ed. 2014, 53, 512.
(d) Fukami, Y.; Wada, T.; Meguro, T.; Chida, N.; Sato, T. Org. Biomol. Chem. 2016, 14, 5486.
(e) Shirokane, K.; Tanaka, Y.; Yoritate, M.; Takayama, N. Sato, T.; Chida, N. Bull. Chem. Soc. Jpn. 2015, 88, 522. See also:
(f) Pace, V.; Vega-Hernández, K. de la; Urban, E.; Langer, T. Org. Lett. 2016, 18, 2750.
[45] Wieclaw, M. M.; Stecko, S. Eur. J. Org. Chem. 2018, DOI:10.1002/ejoc.201701537
[46] Motoyama, Y.; Aoki, M.; Takaoka, N.; Aoto, R.; Nagashima, H. Chem. Commun. 2009, 1574.
[47] (a) Gregory, A. W.; Chambers, A.; Hawkins, P.; Jakubec, A.; Dixon, D. J. Chem.-Eur. J. 2015, 21, 111.
(b) Tan, P. W.; Seayad, J.; Dixon, D. J. Angew. Chem. Int. Ed. 2016, 55, 13436.
[48] (a) Nakajima, M.; Sato, T.; Chida, N. Org. Lett. 2015, 17, 1696.
(b) Katahara, S.; Kobayashi, S.; Fujita, K.; Matsumoto, T.; Sato, T.; Chida, N. J. Am. Chem. Soc. 2016, 138, 5246.
(c) Katahara, S.; Kobayashi, S.; Fujita, K.; Matsumoto, T.; Sato, T.; Chida, N. Bull. Chem. Soc. Jpn. 2017, 90, 893.
[49] Huang, P.-Q.; Ou, W.; Han, F. Chem. Commun. 2016, 52, 11967.
[50] (a) Fuentes de Arriba, A. L.; Lenci, E.; Sonawane, M.; Formery, O.; Dixon, D. J. Angew. Chem. Int. Ed. 2017, 56, 3655.
(b) Xie, L. G.; Dixon, D. J. Chem. Sci. 2017, 8, 7492.
[51] (a) Tinnis, F.; Volkov, A.; Slagbrand, T.; Adolfsson, H. Angew. Chem., Int. Ed. 2016, 55, 4562.
(b) Slagbrand, T.; Kervefors, G.; Tinnis. F.; Adolfsson, H. Adv. Synth. Catal. 2017, 359, 1990.
(c) Trillo, P.; Slagbrand, T.; Tinnis F.; Adolfsson, H. Chem. Commun. 2017, 53, 9159.
[52] Hie, L.; Fine Nathel, N. F.; Shah, T.; Baker, E. L.; Hong, X.; Yang, Y. F.; Liu, P.; Houk, K. N.; Garg, N. K. Nature 2015, 524, 79.
[53] Ritter, S. K. Chem. Eng. News 2015, 93(49), 23.
[54] (a) Ritter, S. K. Chem. Eng. News Archive 2015, 93(30), 9.
(b) Ruider, S. A.; Maulide, N. Angew. Chem. Int. Ed. 2015, 54, 13856.
[55] Weires, N. A.; Baker, E. L.; Garg, N. K. Nat. Chem. 2016, 8, 75.
[56] Meng, G.; Szostak, R.; Szostak, M. Org. Lett. 2017, 19, 3596.
[57] Huang, P.-Q.; Chen, H. Chem. Commun. 2017, 53, 12584.
[58] (a) Kaiser, D.; Teskey, C. J.; Adler, P.; Maulide, N. J. Am. Chem. Soc. 2017, 139, 16040.
(b) Shaaban, S.; Tona, V.; Peng, B.; Maulide, N. Angew. Chem. Int. Ed. 2017, 56, 10938.
(c) Torre, A.; Kaiser, D.; Maulide, N. J. Am. Chem. Soc. 2017, 139, 6578.
(d) Kaiser, D.; de la Torre, A.; Shaaban, S.; Maulide, N. Angew. Chem., Int. Ed. 2017, 56, 5921.
(e) Mauro, G. D.; Maryasin, B.; Kaiser, D.; Shaaban, S.; González, L.; Maulide, N. Org. Lett. 2017, 19, 3815.
(f) Tona, V.; Maryasin, B.; de la Torre, A.; Sprachmann, J.; González, L.; Maulide, N. Org. Lett. 2017, 19, 2662.
(g) Gawali, V. S.; Simeonov, S.; Drescher, M.; Knott, T.; Scheel, O.; Kudolo, J.; Kählig, H.; Hochenegg, K.; Hochenegg, U.; Roller, A.; Todt, H.; Maulide, N. ChemMedChem 2017, 12, 1819.
(h) Peng, B.; Geerdink, D.; Fares, C.; Maulide, N. Angew. Chem. Int. Ed. 2014, 53, 5462.
[59] (a) Xiao, P. H.; Tang, Z. X.; Wang, K.; Chen, H.; Guo, Q. Y.; Chu, Y.; Gao, L.; Song, Z. L. J. Org. Chem. 2018, 83, 1687.
(b) Li, L. H.; Niu, Z. J.; Liang, Y. M. Chem. Eur. J. 2017, 23, 15300.
(c) Li, X. W.; Lin, F. G. R.; Huang, K. M.; Wei, J. L.; Li, X. Y.; Wang, X. Y.; Geng, X. Y.; Jiao, N. Angew. Chem. Int. Ed. 2017, 56, 12307.
(d) Xie, C. M.; Luo, J. S.; Zhang, Y.; Zhu, L. L.; Hong, R. Org. Lett. 2017, 19, 3592.
(e) Chen, J. J.; Long, W. H.; Fang, S. W.; Yang, Y. G.; Wan, X. B. Chem. Commun. 2017, 53, 13256.
(f) Ding, G. N.; Wu, X. Y.; Jiang, L. L.; Zhang, Z. G.; Xie, X. M. Org. Lett. 2017, 19, 6048.
(g) Zhang, Q.; Yuan, J. W.; Yu, M. F.; Zhang, R.; Liang, Y. J.; Huang, P.; Dong, D. W. Synthesis 2017, 49, 4996.
(h) Jiang Meng, J.; Jia, R.; Leng, J.; Wen, M.; Yu, X.; Deng, W.-P. Org. Lett. 2017, 19, 4520.
(i) Shi, L.; Tan, X.; Long, J.; Xiong, X.; Yang, S.; Xue, P.; Lv, H.; Zhang, X. Chem.-Eur. J. 2017, 23, 546.
(j) Yuan, M. L.; Xie, J. H.; Zhou, Q. L. ChemCatChem 2016, 8, 3036.
(k) Yuan, M. L.; Xie, J. H.; Zhu, S. F.; Zhou, Q. L. ACS Catal. 2016, 6, 3665.
(l) Xing, S. Y.; Ren, J.; Wang, K.; Cui, H.; Xia, T.; Zhang, M.; Wang, D. D. Adv. Synth. Catal. 2016, 358, 3093.
(m) Lang, Q.-W.; Hu, X.-N.; Huang, P.-Q. Sci. China:Chem. 2016, 59, 1638.
(n) Mou, X. Q.; Xu, L.; Wang, S. H.; Yang, C. Tetrahedron Lett. 2015, 56, 2820.
(o) Zhang, T. X.; Zhang, Y.; Zhang, W. X.; Luo, M.-M. Adv. Synth. Catal. 2013, 355, 2775.
(p) Xie, W.; Zhao, M.; Cui, C. Organometallics 2013, 32, 7440.
(q) Zhao, M. N.; Ren, Z. H.; Wang, Y. Y.; Guan, Z. H. Chem. Commun. 2012, 48, 8105.

文章导航

/