锂离子电池三元正极材料电解液添加剂的研究进展
收稿日期: 2017-11-29
网络出版日期: 2018-03-22
基金资助
项目受国家自然科学基金(No.51474196)和四川省成都市产业集群协同创新项目(2017-XT00-00001-GX)资助.
Review of Electrolyte Additives for Ternary Cathode Lithium-ion Battery
Received date: 2017-11-29
Online published: 2018-03-22
Supported by
Project supported by the National Natural Science Foundation of China (No. 51474196) and the Collaborative Innovation Project of Industrial Cluster of Chengdu, Sichuan (2017-XT00-00001-GX).
三元层状氧化物{Li[NixCoyMz]O2(0 < x,y,z < 1,M=Mn,缩写NMC;M=Al,缩写NCA)}具有能量密度高、循环性能好、价格适中等优异的综合性能,是目前锂离子电池(LIBs)中最具应用前景的一类正极材料.随着纯电动汽车(EVs)及混合电动汽车(HEVs)的快速发展,人们对LIBs的能量密度、循环寿命以及安全性要求不断提高.然而,在传统电解液体系中,三元正极材料在高电压、高温下会发生剧烈的结构变化和界面副反应,给实际应用带来巨大挑战,尤其是高镍三元材料的循环寿命和安全性.其中,开发适配的电解液添加剂是提高锂离子电池电化学性能最经济有效的方法之一.从物质本征结构出发,综述了近5年来包括碳酸亚乙烯酯(VC)、氟代物、新型锂盐、含P、含B、含S、腈类等及其复合物作为电解液添加剂在NMC及NCA正极材料中的应用及作用机理,并进行总结与展望.
关键词: 锂离子电池; NMC及NCA三元材料; 电解液添加剂; 作用机理
邓邦为 , 孙大明 , 万琦 , 王昊 , 陈滔 , 李璇 , 瞿美臻 , 彭工厂 . 锂离子电池三元正极材料电解液添加剂的研究进展[J]. 化学学报, 2018 , 76(4) : 259 -277 . DOI: 10.6023/A17110517
Ternary layered oxides {Li[NixCoyMz]O2 (0 < x, y, z < 1, M=Mn, NMC; M=Al, NCA)} are one of the most promising cathode materials of lithium-ion batteries (LIBs). However, in the traditional electrolyte system, they will undergo dramatic structural changes and interface side reactions at high potential and high temperature, which will bring great challenges to their practical application, especially for their cycle life and safety. Developing appropriate electrolyte additive is one of the most economical and effective methods to improve the electrochemical performance of LIBs. Based on the intrinsic structure of material, electrolyte additives used for NMC and NCA ternary cathode and their reaction mechanism in the past 5 years are reviewed in this paper, which include vinylene carbonate (VC), fluoro-compounds, new lithium salts, P-based, B-based, S-based, nitrile, others and combinative additives. Among them, VC becomes a kind of universal additive, which can improve the efficiency and cycle life at low voltage and normal temperature. Fluoro-compounds have been developed from mono substituted such as Fluorinated ethylene carbonate (FEC) to multi-fluorine substituted, which can improve the stability of electrode/electrolyte interface under high voltage. New lithium salt additives are mainly used to improve the film forming performance under high voltage and high temperature, such as Lithium bis(fluorosulfonyl)imide (LiFSI), Lithium difluorophosphate (LiDFP). P-contained additives[such as Tris(trimethylsilyl) phosphite (TMSPi)] are mainly to improve the stability of anode-electrolyte interface, and it has obvious synergistic effect when they combined with additives such as VC. B-contained additives are mainly used to improve the dissociation degree and stability of lithium salt, such as Tris(trimethylsilyl)borate (TMSB). S-contained additives are mainly used to improve the ionic conductivity and stability of anode SEI film, such as Prop-1-ene-1,3-sultone (PES). Nitriles are benefited from the strong electron withdrawing effect of -CN, which can improve the stability of the electrode/electrolyte interface at high voltage. Other types of additives are some heterocyclic compounds having film forming ability and various silanes which can eliminate HF and H2O. Combinative addi-tives are developed from VC based composite to PES and PBF (pyridine boron trifluoride) system, which can endure even harsher conditions.
[1] Zhang, S. S. J. Power Sources 2006, 162, 1379.
[2] Tan, S.; Ji, Y. J.; Zhang, Z. R.; Yang, Y. ChemPhysChem 2014, 15, 1956.
[3] Xu, K. Chem. Rev. 2014, 114, 11503.
[4] Liu, W.; Oh, P.; Liu, X.; Lee, M.-J.; Cho, W.; Chae, S.; Kim, Y.; Cho, J. Angew. Chem.-Int. Ed. 2015, 54, 4440.
[5] Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Mater. Today 2015, 18, 252.
[6] Hou, P.; Yin, J.; Ding, M.; Huang, J.; Xu, X. Small (Weinheim an der Bergstrasse, Germany) 2017, DOI:10.1002/smll.20170180210.1002/smll.201701802.
[7] Li, X.; Ge, W.-J.; Wang, H.; Qu, M.-Z. J. Inorg. Mater. 2017, 32, 113. (李想, 葛武杰, 王昊, 瞿美臻, 无机材料学报, 2017, 32, 113.)
[8] Ue, M.; Sasaki, Y.; Tanaka, Y.; Morita, M. Electrolytes For Lithium and Lithium-Ion Batteries, Spinger, New York, 2014.
[9] Burns, J. C.; Petibon, R.; Nelson, K. J.; Sinha, N. N.; Kassam, A.; Way, B. M.; Dahn, J. R. J. Electrochem. Soc. 2013, 160, A1668.
[10] El Ouatani, L.; Dedryvere, R.; Siret, C.; Biensan, P.; Reynaud, S.; Iratcabal, P.; Gonbeau, D. J. Electrochem. Soc. 2009, 156, A103.
[11] Li, J.; Liu, H.; Xia, J.; Cameron, A. R.; Nie, M.; Botton, G. A.; Dahn, J. R. J. Electrochem. Soc. 2017, 164, A655.
[12] Burns, J. C.; Sinha, N. N.; Coyle, D. J.; Jain, G.; VanElzen, C. M.; Lamanna, W. M.; Xiao, A.; Scott, E.; Gardner, J. P.; Dahn, J. R. J. Electrochem. Soc. 2012, 159, A85.
[13] Downie, L. E.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1782.
[14] Lee, W. J.; Prasanna, K.; Jo, Y. N.; Kim, K. J.; Kim, H. S.; Lee, C. W. PCCP 2014, 16, 17062.
[15] Xia, J.; Aiken, C. P.; Ma, L.; Kim, G. Y.; Burns, J. C.; Chen, L. P.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1149.
[16] Madec, L.; Petibon, R.; Tasaki, K.; Xia, J.; Sun, J. P.; Hill, I. G.; Dahn, J. R. PCCP 2015, 17, 27062.
[17] Burns, J. C.; Sinha, N. N.; Jain, G.; Ye, H.; VanElzen, C. M.; Lamanna, W. M.; Xiao, A.; Scott, E.; Choi, J.; Dahn, J. R. J. Electrochem. Soc. 2012, 159, A1095.
[18] Deshpande, R. D.; Ridgway, P.; Fu, Y.; Zhang, W.; Cai, J.; Battaglia, V. J. Electrochem. Soc. 2015, 162, A330.
[19] Qian, Y.; Schultz, C.; Niehoff, P.; Schwieters, T.; Nowak, S.; Schappacher, F. M.; Winter, M. J. Power Sources 2016, 332, 60.
[20] Peng, H. J.; Urbonaite, S.; Villevieille, C.; Wolf, H.; Leitner, K.; Novak, P. J. Electrochem. Soc. 2015, 162, A7072.
[21] Qian, Y.; Niehoff, P.; Boerner, M.; Gruetzke, M.; Moennighoff, X.; Behrends, P.; Nowak, S.; Winter, M.; Schappacher, F. M. J. Power Sources 2016, 329, 31.
[22] Wang, D. Y.; Xia, J.; Ma, L.; Nelson, K. J.; Harlow, J. E.; Xiong, D.; Downie, L. E.; Petibon, R.; Burns, J. C.; Xiao, A.; Lamanna, W. M.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1818.
[23] Madec, L.; Ma, L.; Nelson, K. J.; Petibon, R.; Sun, J.-P.; Hill, I. G.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A1001.
[24] Ma, G.; Wang, L.; Zhang, J.; Chen, H.; He, X.; Ding, Y. Prog. Chem. 2016, 28, 1299. (马国强, 王莉, 张建君, 陈慧闯, 何向明, 丁元胜, 化学进展, 2016, 28, 1299.)
[25] Kim, K.; Park, I.; Ha, S.-Y.; Kim, Y.; Woo, M.-H.; Jeong, M.-H.; Shin, W. C.; Ue, M.; Hong, S. Y.; Choi, N.-S. Electrochim. Acta 2017, 225, 358.
[26] Wang, L.; Ma, Y.; Qu, Y.; Cheng, X.; Zuo, P.; Du, C.; Gao, Y.; Yin, G. Electrochim. Acta 2016, 191, 8.
[27] Streich, D.; Gueguen, A.; Mendez, M.; Chesneau, F.; Novak, P.; Berg, E. J. J. Electrochem. Soc. 2016, 163, A964.
[28] Xiong, D. J.; Petibon, R.; Nie, M.; Ma, L.; Xia, J.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A546.
[29] Xiong, D. J.; Ellis, L. D.; Petibon, R.; Hynes, T.; Liu, Q. Q.; Dahn, J. R. J. Electrochem. Soc. 2017, 164, A340.
[30] Ma, L.; Xia, J.; Xia, X.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1495.
[31] Xu, C.; Lindgren, F.; Philippe, B.; Gorgoi, M.; Bjorefors, F.; Edstrom, K.; Gustafsson, T. Chem. Mater. 2015, 27, 2591.
[32] Klett, M.; Gilbert, J. A.; Trask, S. E.; Polzin, B. J.; Jansen, A. N.; Dees, D. W.; Abraham, D. P. J. Electrochem. Soc. 2016, 163, A875.
[33] Klett, M.; Gilbert, J. A.; Pupek, K. Z.; Trask, S. E.; Abraham, D. P. J. Electrochem. Soc. 2017, 164, A6095.
[34] Hall, D. S.; Glazier, S. L.; Dahn, J. R. PCCP 2016, 18, 11383.
[35] Lee, Y.-M.; Nam, K.-M.; Hwang, E.-H.; Kwon, Y.-G.; Kang, D.-H.; Kim, S.-S.; Song, S.-W. J. Phys. Chem. C 2014, 118, 10631.
[36] Nguyen, D.-T.; Kang, J.; Nam, K.-M.; Paik, Y.; Song, S.-W. J. Power Sources 2016, 303, 150.
[37] Wang, C.; Tang, S.; Zuo, X.; Xiao, X.; Liu, J.; Nan, J. J. Electrochem. Soc. 2015, 162, A1997.
[38] Wang, C.; Zuo, X.; Zhao, M.; Xiao, X.; Yu, L.; Nan, J. J. Power Sources 2016, 307, 772.
[39] Tornheim, A.; He, M.; Su, C.-C.; Zhang, Z. J. Electrochem. Soc. 2017, 164, A6366.
[40] Zheng, X. Z.; Huang, T.; Pan, Y.; Wang, W. G.; Fang, G. H.; Ding, K. N.; Wu, M. X. ACS Appl. Mater. Interfaces 2017, 9, 18758.
[41] Xia, J.; Petibon, R.; Xiong, D.; Ma, L.; Dahn, J. R. J. Power Sources 2016, 328, 124.
[42] Ma, L.; Glazier, S. L.; Petibon, R.; Xia, J.; Peters, J. M.; Liu, Q.; Allen, J.; Doig, R. N. C.; Dahn, J. R. J. Electrochem. Soc. 2017, 164, A5008.
[43] Gmitter, A. J.; Plitz, I.; Amatucci, G. G. J. Electrochem. Soc. 2012, 159, A370.
[44] Downie, L. E.; Hyatt, S. R.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A35.
[45] Liu, Q. Q.; Xiong, D. J.; Petibon, R.; Du, C. Y.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A3010.
[46] Xia, J.; Nie, M.; Burns, J. C.; Xiao, A.; Lamanna, W. M.; Dahn, J. R. J. Power Sources 2016, 307, 340.
[47] Xia, J.; Petibon, R.; Xiao, A.; Lamanna, W. M.; Dahn, J. R. J. Power Sources 2016, 330, 175.
[48] Im, J.; Lee, J.; Ryou, M.-H.; Lee, Y. M.; Cho, K. Y. J. Elec-trochem. Soc. 2017, 164, A6381.
[49] Chretien, F.; Jones, J.; Damas, C.; Lemordant, D.; Willmann, P.; Anouti, M. J. Power Sources 2014, 248, 969.
[50] Ren, T.; Zhuang, Q.; Hao, Y.; Cui, Y. Acta Chim. Sinica 2016, 74, 833. (任彤, 庄全超, 郝玉婉, 崔永丽, 化学学报, 2016, 74, 833.)
[51] Wu, Y. P.; Dai, X. B.; Ma, J. Q.; Cheng, Y. J. Lithium Ion Batteries-Application and Practice, Chemical Industry Press, Beijing, 2004, p. 222. (吴宇平, 戴晓兵, 马军旗, 程预江, 锂离子电池-应用与实践, 化学工业出版社, 北京, 2004, p. 222.)
[52] Xu, W.; Angell, C. A. Electrochem. Solid State Lett. 2001, 4, L3.
[53] Jiang, J.; Fortier, H.; Reimers, J. N.; Dahn, J. R. J. Electrochem. Soc. 2004, 151, A609.
[54] Lu, W.; Chen, Z.; Joachin, H.; Prakash, J.; Liu, J.; Amine, K. J. Power Sources 2007, 163, 1074.
[55] Taeubert, C.; Fleischhammer, M.; Wohlfahrt-Mehrens, M.; Wietelmann, U.; Buhrmester, T. J. Electrochem. Soc. 2010, 157, A721.
[56] Kim, G.-Y.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1394.
[57] Zhang, L.; Ma, Y.; Cheng, X.; Zuo, P.; Cui, Y.; Guan, T.; Du, C.; Gao, Y.; Yin, G. Solid State Ionics 2014, 263, 146.
[58] Li, C.; Hou, Q.; Li, S.; Tang, F.; Wang, P. J. Alloys Compd. 2017, 723, 887.
[59] Xiang, H.; Shi, P.; Bhattacharya, P.; Chen, X.; Mei, D.; Bowden, M. E.; Zheng, J.; Zhang, J.-G.; Xu, W. J. Power Sources 2016, 318, 170.
[60] Abraham, D. P.; Furczon, M. M.; Kang, S. H.; Dees, D. W.; Jansen, A. N. J. Power Sources 2008, 180, 612.
[61] Qin, Y.; Chen, Z.; Liu, J.; Amine, K. Electrochem. Solid State Lett. 2010, 13, A11.
[62] Mun, J.; Lee, J.; Hwang, T.; Lee, J.; Noh, H.; Choi, W. J. Electroanal. Chem. 2015, 745, 8.
[63] Shkrob, I. A.; Zhu, Y.; Marin, T. W.; Abraham, D. P. J. Phys. Chem. C 2013, 117, 23750.
[64] Lee, S. J.; Han, J.-G.; Lee, Y.; Jeong, M.-H.; Shin, W. C.; Ue, M.; Choi, N.-S. Electrochim. Acta 2014, 137, 1.
[65] Cha, J.; Han, J.-G.; Hwang, J.; Cho, J.; Choi, N.-S. J. Power Sources 2017, 357, 97.
[66] Wu, F.; Zhu, Q.; Li, L.; Chen, R.; Chen, S. J. Mater. Chem. A 2013, 1, 3659.
[67] Liu, M.; Dai, F.; Ma, Z.; Ruthkosky, M.; Yang, L. J. Power Sources 2014, 268, 37.
[68] Park, K.; Yu, S.; Lee, C.; Lee, H. J. Power Sources 2015, 296, 197.
[69] Yan, G.; Li, X.; Wang, Z.; Guo, H.; Peng, W.; Hu, Q. J. Solid State Electrochem. 2015, 20, 507.
[70] Scheers, J.; Johansson, P.; Jacobsson, P. J. Electrochem. Soc. 2008, 155, A628.
[71] Hayamizu, K.; Matsuo, A.; Arai, J. J. Electrochem. Soc. 2009, 156.
[72] Chen, Z.; Ren, Y.; Jansen, A. N.; Lin, C.-k.; Weng, W.; Amine, K. Nat. Commun. 2013, 4.
[73] Park, K.; Yu, S.; Lee, C.; Lee, H. J. Power Sources 2015, 296, 197.
[74] Forestier, C.; Grugeon, S.; Davoisne, C.; Lecocq, A.; Marlair, G.; Armand, M.; Sannier, L.; Laruelle, S. J. Power Sources 2016, 330, 186.
[75] Wang, D. Y.; Xiao, A.; Wells, L.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A169.
[76] Miao, R.; Yang, J.; Xu, Z.; Wang, J.; Nuli, Y.; Sun, L. Sci. Rep. 2016, 6.
[77] Petibon, R.; Aiken, C. P.; Ma, L.; Xiong, D.; Dahn, J. R. Electrochim. Acta 2015, 154, 287.
[78] Pohl, B.; Gruenebaum, M.; Drews, M.; Passerini, S.; Winter, M.; Wiemhoefer, H.-D. Electrochim. Acta 2015, 180, 795.
[79] Madec, L.; Xia, J.; Petibon, R.; Nelson, K. J.; Sun, J.-P.; Hill, I. G.; Dahn, J. R. J. Phys. Chem. C 2014, 118, 29608.
[80] Yang, G.; Shi, J.; Shen, C.; Wang, S.; Xia, L.; Hu, H.; Luo, H.; Xia, Y.; Liu, Z. RSC Adv. 2017, 7, 26052.
[81] Li, B.; Wang, Y.; Tu, W.; Wang, Z.; Xu, M.; Xing, L.; Li, W. Electrochim. Acta 2014, 147, 636.
[82] Kim, K.-E.; Jang, J. Y.; Park, I.; Woo, M.-H.; Jeong, M.-H.; Shin, W. C.; Ue, M.; Choi, N.-S. Electrochem. Commun. 2015, 61, 121.
[83] Milien, M. S.; Tottempudi, U.; Son, M.; Ue, M.; Lucht, B. L. J. Electrochem. Soc. 2016, 163, A1369.
[84] Murmann, P.; Streipert, B.; Kloepsch, R.; Ignatiev, N.; Sartori, P.; Winter, M.; Cekic-Laskovic, I. PCCP 2012, 17, 9352.
[85] Murmann, P.; Schmitz, R.; Nowak, S.; Ignatiev, N.; Sartori, P.; Celdc-Laskovic, I.; Winter, M. J. Electrochem. Soc. 2015, 162, A1738.
[86] Xu, C.; Renault, S.; Ebadi, M.; Wang, Z.; Bjorklund, E.; Guyomard, D.; Brandell, D.; Edstrom, K.; Gustafsson, T. Chem. Mater. 2017, 29, 2254.
[87] Li, Q.; Jiao, S.; Luo, L.; Ding, M. S.; Zheng, J.; Cartmell, S. S.; Wang, C.-M.; Xu, K.; Zhang, J.-G.; Xu, W. ACS Appl. Mater. Interfaces 2017, 9, 18826.
[88] Wagner, R.; Streipert, B.; Kraft, V.; Jimenez, A. R.; Roeser, S.; Kasnatscheew, J.; Gallus, D. R.; Boerner, M.; Mayer, C.; Arlinghaus, H. F.; Korth, M.; Amereller, M.; Cekic-Laskovic, I.; Winter, M. Adv. Mater. Interfaces 2016, 3, 1.
[89] Yan, G.; Li, X.; Wang, Z.; Guo, H.; Wang, C. J. Power Sources 2014, 248, 1306.
[90] Liao, X.; Zheng, X.; Chen, J.; Huang, Z.; Xu, M.; Xing, L.; Liao, Y.; Lu, Q.; Li, X.; Li, W. Electrochim. Acta 2016, 212, 352.
[91] Rong, H.; Xu, M.; Xie, B.; Huang, W.; Liao, X.; Xing, L.; Li, W. J. Power Sources 2015, 274, 1155.
[92] Borodin, O.; Behl, W.; Jow, T. R. J. Phys. Chem. C 2013, 117, 8661.
[93] Delp, S. A.; Borodin, O.; Olguin, M.; Eisner, C. G.; Allen, J. L.; Jow, T. R. Electrochim. Acta 2016, 209, 498.
[94] Mai, S.; Xu, M.; Liao, X.; Hu, J.; Lin, H.; Xing, L.; Liao, Y.; Li, X.; Li, W. Electrochim. Acta 2014, 147, 565.
[95] Han, J.-G.; Lee, S. J.; Lee, J.; Kim, J.-S.; Lee, K. T.; Choi, N.-S. ACS Appl. Mater. Interfaces 2015, 7, 8319.
[96] Yim, T.; Woo, S.-G.; Lim, S. H.; Cho, W.; Song, J. H.; Han, Y.-K.; Kim, Y.-J. J. Mater. Chem. A 2015, 3, 6157.
[97] Zhu, Y.; Luo, X.; Xu, M.; Zhang, L.; Yu, L.; Fan, W.; Li, W. J. Power Sources 2016, 317, 65.
[98] Song, Y.-M.; Kim, C.-K.; Kim, K.-E.; Hong, S. Y.; Choi, N.-S. J. Power Sources 2016, 302, 22.
[99] Kim, D. Y.; Park, H.; Choi, W. I.; Roy, B.; Seo, J.; Park, I.; Kim, J. H.; Park, J. H.; Kang, Y. S.; Koh, M. J. Power Sources 2017, 355, 154.
[100] Han, Y.-K.; Yoo, J.; Yim, T. RSC Adv. 2017, 7, 20049.
[101] Peebles, C.; Sahore, R.; Gilbert, J. A.; Garcia, J. C.; Tornheim, A.; Bareno, J.; Iddir, H.; Liao, C.; Abraham, D. P. J. Electrochem. Soc. 2017, 164, A1579.
[102] Sinha, N. N.; Burns, J. C.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1084.
[103] Koo, B.; Lee, J.; Lee, Y.; Kim, J. K.; Choi, N.-S. Electrochim. Acta 2015, 173, 750.
[104] Han, Y.-K.; Yoo, J.; Yim, T. J. Mater. Chem. A 2015, 3, 10900.
[105] Qi, X.; Tao, L.; Hahn, H.; Schultz, C.; Gallus, D. R.; Cao, X.; Nowak, S.; Roeser, S.; Li, J.; Cekic-Laskovic, I.; Rad, B. R.; Winter, M. RSC Adv. 2016, 6, 38342.
[106] He, M.; Su, C.-C.; Peebles, C.; Feng, Z.; Connell, J. G.; Liao, C.; Wang, Y.; Shkrob, I. A.; Zhang, Z. ACS Appl. Mater. Interfaces 2016, 8, 11450.
[107] Wang, L.; Ma, Y. L.; Li, Q.; Cui, Y. Z.; Wang, P. P.; Cheng, X. Q.; Zuo, P. J.; Du, C. Y.; Gao, Y. Z.; Yin, G. P. Electrochim. Acta 2017, 243, 72.
[108] von Aspern, N.; Röser, S.; Rezaei Rad, B.; Murmann, P.; Streipert, B.; Mönnighoff, X.; Tillmann, S. D.; Shevchuk, M.; Stubbmann-Kazakova, O.; Röschenthaler, G.-V.; Nowak, S.; Winter, M.; Cekic-Laskovic, I. J. Fluorine Chem. 2017, 198, 24.
[109] Xia, J.; Madec, L.; Ma, L.; Ellis, L. D.; Qiu, W.; Nelson, K. J.; Lu, Z.; Dahn, J. R. J. Power Sources 2015, 295, 203.
[110] Liu, Q. Q.; Petibon, R.; Du, C. Y.; Dahn, J. R. J. Electrochem. Soc. 2017, 164, A1173.
[111] Mai, S.; Xu, M.; Liao, X.; Xing, L.; Li, W. J. Power Sources 2015, 273, 816.
[112] Wagner, R.; Korth, M.; Streipert, B.; Kasnatscheew, J.; Gallus, D. R.; Brox, S.; Arnereller, M.; Cekic-Laskovic, I.; Winter, M. ACS Appl. Mater. Interfaces 2016, 8, 30871.
[113] Gao, D.; Xu, J. B.; Lin, M.; Xu, Q.; Ma, C. F.; Xiang, H. F. RSC Adv. 2015, 5, 17566.
[114] Zuo, X.; Fan, C.; Liu, J.; Xiao, X.; Wu, J.; Nan, J. J. Power Sources 2013, 229, 308.
[115] Yan, C.; Xu, Y.; Xia, J.; Gong, C.; Chen, K. J. Energy Chem. 2016, 25, 659.
[116] Rong, H.; Xu, M.; Xie, B.; Liao, X.; Huang, W.; Xing, L.; Li, W. Electrochim. Acta 2014, 147, 31.
[117] Li, J.; Xing, L.; Zhang, R.; Chen, M.; Wang, Z.; Xu, M.; Li, W. J. Power Sources 2015, 285, 360.
[118] Wang, K.; Xing, L.; Zhu, Y.; Zheng, X.; Cai, D.; Li, W. J. Power Sources 2017, 342, 677.
[119] Liao, X.; Huang, Q.; Mai, S.; Wang, X.; Xu, M.; Xing, L.; Liao, Y.; Li, W. J. Power Sources 2014, 272, 501.
[120] Liao, X.; Sun, P.; Xu, M.; Xing, L.; Liao, Y.; Zhang, L.; Yu, L.; Fan, W.; Li, W. Appl. Energy 2016, 175, 505.
[121] Han, Y.-K.; Yoo, J.; Yim, T. Electrochim. Acta 2016, 215, 455.
[122] Imholt, L.; Roeser, S.; Boerner, M.; Streipert, B.; Rad, B. R.; Winter, M.; Cekic-Laskovic, I. Electrochim. Acta 2017, 235, 332.
[123] Han, Y.-K.; Lee, K.; Yoo, J.; Huh, Y. S. Theor. Chem. Acc. 2014, 133.
[124] Birrozzi, A.; Laszczynski, N.; Hekmatfar, M.; von Zamory, J.; Giffin, G. A.; Passerini, S. J. Power Sources 2016, 325, 525.
[125] Wang, F.; Lin, Y.; Suo, L.; Fan, X.; Gao, T.; Yang, C.; Han, F.; Qi, Y.; Xu, K.; Wang, C. Energ. Environ. Sci. 2016, 9, 3666.
[126] Burns, J. C.; Sinha, N. N.; Jain, G.; Ye, H.; VanElzen, C. M.; Lamanna, W. M.; Xiao, A.; Scott, E.; Choi, J.; Dahn, J. R. J. Electrochem. Soc. 2012, 159, A1105.
[127] Burns, J. C.; Xia, X.; Dahn, J. R. J. Electrochem. Soc. 2013, 160, A383.
[128] Petibon, R.; Aiken, C. P.; Sinha, N. N.; Burns, J. C.; Ye, H.; VanElzen, C. M.; Jain, G.; Trussler, S.; Dahn, J. R. J. Electrochem. Soc. 2013, 160, A117.
[129] Petibon, R.; Sinha, N. N.; Burns, J. C.; Aiken, C. P.; Ye, H.; VanElzen, C. M.; Jain, G.; Trussler, S.; Dahn, J. R. J. Power Sources 2014, 251, 187.
[130] Ping, P.; Xia, X.; Wang, Q. S.; Sun, J. H.; Dahn, J. R. J. Electro-chem. Soc. 2013, 160, A426.
[131] Nie, M.; Xia, J.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A1693.
[132] Nie, M.; Xia, J.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A1186.
[133] Nie, M.; Xia, J.; Ma, L.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A2066.
[134] Nie, M.; Ma, L.; Xia, J.; Xiao, A.; Lamanna, W. M.; Smith, K.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A2124.
[135] Nie, M.; Madec, L.; Xia, J.; Hall, D. S.; Dahn, J. R. J. Power Sources 2016, 328, 433.
[136] Pang, C.; Xu, G.; An, W.; Ding, G.; Liu, X.; Chai, J.; Ma, J.; Liu, H.; Cui, G. Energy Technol. 2017, 5, 1979.
[137] Chen, Z. H.; Amine, K. J. Electrochem. Soc. 2006, 153, A1221.
[138] Wang, Z.; Xing, L.; Li, J.; Li, B.; Xu, M.; Liao, Y.; Li, W. Electrochim. Acta 2015, 184, 40.
[139] Yu, Q.; Chen, Z.; Xing, L.; Chen, D.; Rong, H.; Liu, Q.; Li, W. Electrochim. Acta 2015, 176, 919.
[140] Li, J.; Xing, L.; Chen, J.; Zhou, H.; Xu, M.; Li, W. J. Electrochem. Soc. 2016, 163, A2258.
[141] Li, J.; Zhang, L.; Yu, L.; Fan, W.; Wang, Z.; Yang, X.; Lin, Y.; Xing, L.; Xu, M.; Li, W. J. Phys. Chem. C 2016, 120, 26899.
[142] Wang, Z.; Xing, L.; Li, J.; Xu, M.; Li, W. J. Power Sources 2016, 307, 587.
[143] Zuo, X.; Xu, M.; Li, W.; Su, D.; Liu, J. Electrochem. Solid-State Lett. 2006, 9, A196.
[144] Lee, H.; Choi, S.; Choi, S.; Kim, H.-J.; Choi, Y.; Yoon, S.; Cho, J.-J. Electrochem. Commun. 2007, 9, 801.
[145] Leggesse, E. G.; Jiang, J.-C. RSC Adv. 2012, 2, 5439.
[146] Park, G.; Nakamura, H.; Lee, Y.; Yoshio, M. J. Power Sources 2009, 189, 602.
[147] Kim, J. H.; Bae, S.-y.; Min, J.-H.; Song, S.-W.; Kim, D.-W. Electrochim. Acta 2012, 78, 11.
[148] Zhang, B.; Metzger, M.; Solchenbach, S.; Payne, M.; Meini, S.; Gasteiger, H. A.; Garsuch, A.; Lucht, B. L. J. Phys. Chem. C 2015, 119, 11337.
[149] Jung, H. M.; Park, S.-H.; Jeon, J.; Choi, Y.; Yoon, S.; Cho, J.-J.; Oh, S.; Kang, S.; Han, Y.-K.; Lee, H. J. Mater. Chem. A 2013, 1, 11975.
[150] Xu, M.; Li, W.; Lucht, B. L. J. Power Sources 2009, 193, 804.
[151] Kang, K. S.; Choi, S.; Song, J.; Woo, S.-G.; Jo, Y. N.; Choi, J.; Yim, T.; Yu, J.-S.; Kim, Y.-J. J. Power Sources 2014, 253, 48.
[152] Kim, H.; Grugeon, S.; Gachot, G.; Armand, M.; Sannier, L.; Laruelle, S. Electrochim. Acta 2014, 136, 157.
[153] Yim, T.; Kim, S. H.; Woo, S.-G.; Lee, K.; Song, J. H.; Cho, W.; Kim, K. J.; Kim, J.-S.; Kim, Y.-J. RSC Adv. 2014, 4, 19172.
[154] Pires, J.; Timperman, L.; Castets, A.; Pena, J. S.; Dumont, E.; Levasseur, S.; Dedryvere, R.; Tessier, C.; Anouti, M. RSC Adv. 2015, 5, 42088.
[155] Li, B.; Xu, M.; Li, T.; Li, W.; Hu, S. Electrochem. Commun. 2012, 17, 92.
[156] Li, B.; Xu, M.; Li, B.; Liu, Y.; Yang, L.; Li, W.; Hu, S. Electrochim. Acta 2013, 105, 1.
[157] Nelson, K. J.; Xia, J.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1884.
[158] Xia, J.; Ma, L.; Aiken, C. P.; Nelson, K. J.; Chen, L. P.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1634.
[159] Madec, L.; Petibon, R.; Xia, J.; Sun, J. P.; Hill, I. G.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A2635.
[160] Self, J.; Aiken, C. P.; Petibon, R.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A796.
[161] Self, J.; Hall, D. S.; Madec, L.; Dahn, J. R. J. Power Sources 2015, 298, 369.
[162] Petibon, R.; Madec, L.; Rotermund, L. M.; Dahn, J. R. J. Power Sources 2016, 313, 152.
[163] Ellis, L. D.; Xia, J.; Louli, A. J.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A1686.
[164] Han, Y.-K.; Yoo, J.; Jung, J. J. Phys. Chem. C 2016, 120, 28390.
[165] Xia, J.; Harlow, J. E.; Petibon, R.; Burns, J. C.; Chen, L. P.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A547.
[166] Zuo, X.; Fan, C.; Xiao, X.; Liu, J.; Nan, J. ECS Electrochem. Lett. 2012, 1, A50.
[167] Zuo, X.; Fan, C.; Xiao, X.; Liu, J.; Nan, J. J. Power Sources 2012, 219, 94.
[168] Xia, J.; Sinha, N. N.; Chen, L. P.; Kim, G. Y.; Xiong, D. J.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A84.
[169] Ding, Z.; Li, X.; Wei, T.; Yin, Z.; Li, X. Electrochim. Acta 2016, 196, 622.
[170] Huang, T.; Zheng, X.; Pan, Y.; Wang, W.; Fang, G.; Wu, M. Electrochim. Acta 2015, 156, 328.
[171] Zheng, X.; Huang, T.; Pan, Y.; Wang, W.; Fang, G.; Ding, K.; Wu, M. J. Power Sources 2016, 319, 116.
[172] Zheng, X.; Huang, T.; Pan, Y.; Wang, W.; Fang, G.; Wu, M. J. Power Sources 2015, 293, 196.
[173] Yim, T.; Kang, K. S.; Mun, J.; Lim, S. H.; Woo, S.-G.; Kim, K. J.; Park, M.-S.; Cho, W.; Song, J. H.; Han, Y.-K.; Yu, J.-S.; Kim, Y.-J. J. Power Sources 2016, 302, 431.
[174] Zuo, X.; Zhao, M.; Ma, X.; Xiao, X.; Liu, J.; Nan, J. Electrochim. Acta 2017, 245, 705.
[175] Cai, H.; Jing, H.; Zhang, X.; Shen, M.; Wang, Q. J. Electrochem. Soc. 2017, 164, A714.
[176] Xia, J.; Dahn, J. R. J. Power Sources 2016, 324, 704.
[177] Xia, L.; Yu, L.; Hu, D.; George, C. Z. Acta Chim. Sinica 2017, 75, 1183. (夏兰, 余林颇, 胡笛, 陈政, 化学学报, 2017, 75, 1183.)
[178] Santner, H. J.; Moller, K. C.; Ivanco, J.; Ramsey, M. G.; Netzer, F. P.; Yamaguchi, S.; Besenhard, J. O.; Winter, M. J. Power Sources 2003, 119, 368.
[179] Kim, Y.-S.; Kim, T.-H.; Lee, H.; Song, H.-K. Energ. Environ. Sci. 2011, 4, 4038.
[180] Nurpeissova, A.; Park, D. I.; Kim, S. S.; Sun, Y. K. J. Elec-trochem. Soc. 2015, 163, A171.
[181] Wang, X.; Zheng, X.; Liao, Y.; Huang, Q.; Xing, L.; Xu, M.; Li, W. J. Power Sources 2017, 338, 108.
[182] Kim, Y.-S.; Lee, H.; Song, H.-K. ACS Appl. Mater. Interfaces 2014, 6, 8913.
[183] Brox, S.; Roeser, S.; Husch, T.; Hildebrand, S.; Fromm, O.; Korth, M.; Winter, M.; Cekic-Laskovic, I. ChemSusChem 2016, 9, 1704.
[184] Hong, P.; Xu, M.; Zheng, X.; Zhu, Y.; Liao, Y.; Xing, L.; Huang, Q.; Wan, H.; Yang, Y.; Li, W. J. Power Sources 2016, 329, 216.
[185] Hong, P.; Xu, M.; Chen, D.; Chen, X.; Xing, L.; Huang, Q.; Li, W. J. Electrochem. Soc. 2017, 164, A137.
[186] Wang, C.; Yu, L.; Fan, W.; Liu, J.; Ouyang, L.; Yang, L.; Zhu, M. ACS Appl. Mater. Interfaces 2017, 9, 9630.
[187] Rohan, R.; Kuo, T.-C.; Lin, J.-H.; Hsu, Y.-C.; Li, C.-C.; Lee, J.-T. J. Phys. Chem. C 2016, 120, 6450.
[188] Kim, G.-Y.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A437.
[189] Liu, Y.; Qin, Y.; Peng, Z.; Zhou, J.; Wan, C.; Wang, D. J. Mater. Chem. A 2015, 3, 8246.
[190] Dong, P.; Wang, D.; Yao, Y.; Li, X.; Zhang, Y.; Ru, J.; Ren, T. J. Power Sources 2017, 344, 111.
[191] Qin, Y.; Chen, Z.; Lu, W.; Amine, K. J. Power Sources 2010, 195, 6888.
[192] Lee, H.; Han, T.; Cho, K. Y.; Ryou, M.-H.; Lee, Y. M. ACS Appl. Mater. Interfaces 2016, 8, 21366.
[193] Röser, S.; Lerchen, A.; Ibing, L.; Cao, X.; Kasnatscheew, J.; Glorius, F.; Winter, M.; Wagner, R. Chem. Mater. 2017, 29, 7733.
[194] Xia, J.; Liu, Q.; Hebert, A.; Hynes, T.; Petibon, R.; Dahn, J. R. J. Electrochem. Soc. 2017, 164, A1268.
[195] Peebles, C.; He, M.; Feng, Z.; Su, C.-C.; Zeng, L.; Bedzyk, M. J.; Fenter, P.; Wang, Y.; Zhang, Z.; Liao, C. J. Electrochem. Soc. 2017, 164, A173.
[196] Qiu, W.; Xia, J.; Chen, L.; Dahn, J. R. J. Power Sources 2016, 318, 228.
[197] Qin, X.-Y.; Wang, J.-L.; Tang, D.-P.; Mai, Y.-J.; Zhang, L.-Z. J. Zhejiang Univ.-Sci. A 2013, 14, 514.
[198] Qin, X.; Wang, J.; Zhang, L. Prog. Chem. 2012, 24, 810. (秦雪英, 汪靖伦, 张灵志, 化学进展, 2012, 24, 810.)
[199] Wang, Z.; Huang, Y.; Wang, X.; Jia, D.; Guo, Z.; Miao, M. Solid State Ionics 2013, 232, 19.
[200] Deng, B.; Wang, H.; Ge, W.; Li, X.; Yan, X.; Chen, T.; Qu, M.; Peng, G. Electrochim. Acta 2017, 236, 61.
[201] Wang, H.; Sun, D.; Li, X.; Ge, W.; Deng, B.; Qu, M.; Peng, G. Electrochim. Acta 2017, 254, 112.
[202] Gallus, D. R.; Wagner, R.; Wiemers-Meyer, S.; Winter, M.; Cekic-Laskovic, I. Electrochim. Acta 2015, 184, 410.
[203] Xia, J.; Sinha, N. N.; Chen, L. P.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A264.
[204] Xia, J.; Petibon, R.; Sinha, N. N.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A2227.
[205] Ma, L.; Wang, D. Y.; Downie, L. E.; Xia, J.; Nelson, K. J.; Sinha, N. N.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1261.
[206] Wang, D. Y.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A1890.
[207] Xia, J.; Ma, L.; Dahn, J. R. J. Power Sources 2015, 287, 377.
[208] Downie, L. E.; Hyatt, S. R.; Wright, A. T. B.; Dahn, J. R. J. Phys. Chem. C 2014, 118, 29533.
[209] Ma, L.; Xia, J.; Dahn, J. R. J. Electrochem. Soc. 2014, 161, A2250.
[210] Ma, L.; Xia, J.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A1170.
[211] Ma, L.; Self, J.; Nie, M.; Glazier, S.; Wang, D. Y.; Lin, Y.-S.; Dahn, J. R. J. Power Sources 2015, 299, 130.
[212] Arumugam, R. S.; Ma, L.; Li, J.; Xia, X.; Paulsen, J. M.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A2531.
[213] Nelson, K. J.; d'Eon, G. L.; Wright, A. T. B.; Ma, L.; Xia, J.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A1046.
[214] Nelson, K. J.; Abarbanel, D. W.; Xia, J.; Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A272.
[215] Xiong, D. J.; Ellis, L. D.; Nelson, K. J.; Hynes, T.; Petibon, R.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A3069.
[216] Xia, J.; Self, J.; Ma, L.; Dahn, J. R. J. Electrochem. Soc. 2015, 162, A1424.
[217] Xia, J.; Ma, L.; Nelson, K. J.; Nie, M.; Lu, Z.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A2399.
[218] Huang, J.; Sun, Y.; Wang, Y.; Zhang, Q. Acta Chim. Sinica 2017, 75, 173. (黄佳琦, 孙滢智, 王云飞, 张强, 化学学报, 2017, 75, 173.)
[219] Xiang, X.; Lu, Y.; Chen, J. Acta Chim. Sinica 2017, 75, 154. (向兴德, 卢艳莹, 陈军, 化学学报, 2017, 75, 154.)
/
〈 |
|
〉 |