研究论文

石墨毡载纳米δ-MnO2高性能除铵净水材料研究

  • 孙梦佳 ,
  • 吴天怡 ,
  • 李天玉 ,
  • 郭风巧 ,
  • 唐阳 ,
  • 莫恒亮 ,
  • 杨志涛 ,
  • 万平玉
展开
  • a 北京化工大学电化学研究所 北京 100029;
    b 北京碧水源膜科技有限公司 北京 101400;
    c 中国城市规划设计研究院水质安全研究所 北京 100044

收稿日期: 2018-02-10

  网络出版日期: 2018-04-03

基金资助

国家自然科学基金(No.21506010)和北京市自然科学基金(No.2182050)资助项目.

Research on High Performance Ammonium Removal Materials Based on δ-MnO2 Nanoplate Arrays Decorated Graphite Felt

  • Sun Mengjia ,
  • Wu Tianyi ,
  • Li Tianyu ,
  • Guo Fengqiao ,
  • Tang Yang ,
  • Mo Hengliang ,
  • Yang Zhitao ,
  • Wan Pingyu
Expand
  • a Institute of Applied Electrochemistry, Beijing University of Chemical Technology, Beijing 100029;
    b Beijing OriginWater Membrane Technology Co., Ltd., Beijing 101400;
    c China Academy of Urban Planning & Design, Beijing 100044

Received date: 2018-02-10

  Online published: 2018-04-03

Supported by

Project supported by the National Natural Science Foundation of China (No. 21506010) and the Beijing Natural Science Foundation (No. 2182050).

摘要

首先制备了α-MnO2纳米花簇、β-MnO2纳米针和δ-MnO2微米颗粒三种不同晶型的MnO2粉末材料,对其结构、形貌及吸附除铵能力进行了表征和测试.结果表明,层间距(7.2Å)大于NH4+直径(2.96Å)和水合NH4+直径(6.62Å)的δ-MnO2相比其他两种晶型的MnO2有更高的NH4+吸附量;接着研究采用KMnO4原位氧化还原法在石墨毡(GF)上直接生长超薄δ-MnO2纳米片(MnO2NPs)阵列构筑了石墨毡载纳米MnO2(MnO2NPs/GF)多级结构材料,制备简单,无须成型造粒就可直接用作除铵净水材料,研究结果表明,MnO2NPs/GF不仅具有较高的吸附量(15 mg·g-1)与良好的选择性,同时还展现了优异的快速吸附和稳定的循环使用性能.MnO2NPs/GF对水中NH4+的吸附符合准二级动力学模型,其吸附等温线符合Langmuir吸附等温式,是吸附-离子交换法除铵的理想材料.

本文引用格式

孙梦佳 , 吴天怡 , 李天玉 , 郭风巧 , 唐阳 , 莫恒亮 , 杨志涛 , 万平玉 . 石墨毡载纳米δ-MnO2高性能除铵净水材料研究[J]. 化学学报, 2018 , 76(6) : 467 -474 . DOI: 10.6023/A18020069

Abstract

We synthesized three kinds of MnO2 powder with different crystalline phases including α-MnO2 nanoflowers, β-MnO2 nanorods and δ-MnO2 micro-particles. The structure and morphology of prepared MnO2 were studied by XRD (X-ray diffraction), SEM (Scanning Electron Microscope), TEM (Transmission Electron Microscope) and XPS (X-ray photoelectron spectroscopy), systematically. Adsorption process was conducted in NH4Cl solution (40 mg·L-1 NH3-N) and actual water samples containing NH4+, Ca2+, Mg2+, K+ and Na+, respectively. The results demonstrate that δ-MnO2 with 7.2 Å interlayer spacing which is a little larger than the diameter of hydrated ammonium (6.62 Å) has high adsorption capacity; α-MnO2 with[2×2] tunnel of 4.6 Å has less adsorption capacity than that of δ-MnO2, and β-MnO2 whose[1×1] tunnel is just 1.89 Å, barely has adsorption capacity. Then MnO2NPs/GF (MnO2 nanoplates decorated graphite felt) was prepared via a facile in-situ redox process. Graphite felt (GF) was immersed in KMnO4 solution (4 g·L-1, pH=2) at 65℃ for 5 h to get MnO2NPs/GF. GF not only reacted as the reductant of KMnO4, but also acted as 3D framework to support the in-situ deposited MnO2NPs. MnO2NPs/GF shows high adsorption capacity (15 mg·g-1) and good selectivity (86.7%). In repetitive adsorption-desorption experiments, MnO2NPs/GF not only exhibits good stability after 20 cycles, but also decreases the concentration of NH3-N to as low as 1 mg·L-1. The thermodynamics experiment demonstrates that the adsorption isotherm fit well with Langmuir isotherm, and the adsorption process corresponds to the pseudo-second-order model. The excellent performance of MnO2NPs/GF is attributed to the following three aspects. Firstly, the 7.2 Å interlayer spacing of δ-MnO2 is suitable for the exchange-adsorption of NH4+. Secondly, the ultra-thin MnO2 nanoplate arrays, which vertically grow on the graphite felt substrate, provide fast path and convenient interface for ion exchange. Finally, the interlaced nanoplates with self-supported structure ensure its high stability. In a conclusion, MnO2NPs/GF has a bright future in the field of ammonium removal.

参考文献

[1] Origin water, Origin water is a practitioner of "Class IV water" standard and a leader of MBR technique, new normal 036/14/2016, http://www.originwater.com/cpyjs/MF/jslt/5613.html(碧水源, 碧水源"IV类水"标准的践行者, MBR技术的领导者, 新常态032016年6月14日, http://www.originwater.com/cpyjs/MF/jslt/5613.html)
[2] (a) Guaya, D.; Valderrama, C.; Farran, A.; Cortina, J. L. J. Chem. Technol. Biotechnol. 2016, 91, 1737;
(b) Thornton, A.; Pearce, P.; Parsons, S. A. Water Res. 2007, 41, 433;
(c) Montegut, G.; Michelin, L.; Brendle, J.; Lebeau, B.; Patarin, J. J. Environ. Manage. 2016, 167, 147;
(d) Zielinski, M.; Zielinska, M.; Debowski, M. Desalin. Water Treat. 2016, 57, 8748.
[3] (a) Moussavi, G.; Talebi, S.; Farohki, M.; Mojtabaee Sabouti, R. Desalin. Water Treat. 2013, 51, 5710;
(b) Langwaldt, J. Sep. Sci. Technol. 2008, 43, 2166;
(c) Wang, Y. F. Adv. Mater. Res. 2012, 554-556, 2031.
[4] (a) Luukkonen, T.; Sarkkinen, M.; Kemppainen, K.; Ram?, J.; Lassi, U. Appl. Clay Sci. 2016, 119, 266;
(b) Luukkonen, T.; Tolonen, E.-T.; Runtti, H.; Kemppainen, K.; Peramaki, P.; Ram?, J.; Lassi, U. J. Mater. Sci. 2017, 52, 9363;
(c) Liu, Q. Q. Ph.D. Dissertation, Tianjin University, Tianjin, 2011. (刘琼琼, 博士论文, 天津大学, 天津, 2011.)
[5] Li, X.-J.; Zhao, Y.; Chu, W.-G.; Wang, Y.; Li, Z.-J.; Jiang, P.; Zhao, X.-C.; Liang, M.; Liu, Y. RSC Adv. 2015, 5, 77437.
[6] (a) Yuan, Y.; Nie, A.; Odegard, G. M.; Xu, R.; Zhou, D.; Santhanagopalan, S.; He, K.; Asayesh-Ardakani, H.; Meng, D. D.; Klie, R. F.; Johnson, C.; Lu, J.; Shahbazian-Yassar, R. Nano Lett. 2015, 15, 2998;
(b) Devaraj, S.; Munichandraiah, N. J. Phys. Chem. C 2008, 112, 4406.
[7] Li, L.; Sui, J.; Huang, R.; Xiang, W.; Qin, W. RSC Adv. 2017, 7, 42289.
[8] Wang, L.; Ma, W.; Han, M.; Meng, C. G. Acta Chim. Sinica 2007, 65, 1135. (王禄, 马伟, 韩梅, 孟长功, 化学学报, 2007, 65, 1135.)
[9] Zhu, L. J.; Zhang, J. C.; Zai, D. X.; Chai, J. J.; Wang, X. J. Saf. Environ. 2007, 7, 20. (朱丽珺, 张金池, 宰德欣, 柴家觉, 王忺, 安全与环境学报, 2007, 7, 20.)
[10] Zhang, P.; He, M.; Xu, S.; Yan, X. J. Mater. Chem. A 2015, 3, 10811.
[11] Liu, J.; Ge, X.; Ye, X.; Wang, G.; Zhang, H.; Zhou, H.; Zhang, Y.; Zhao, H. J. Mater. Chem. A 2016, 4, 1970.
[12] Liu, L.; Guo, X.; Tallon, R.; Huang, X.; Chen, J. Chem. Commun. 2017, 53, 881.
[13] Liu, H.; Hu, Z.; Tian, L.; Su, Y.; Ruan, H.; Zhang, L.; Hu, R. Ceram. Int. 2016, 42, 13519.
[14] (a) Tansel, B.; Sager, J.; Rector, T.; Garland, J.; Strayer, R. F.; Levine, L.; Roberts, M.; Hummerick, M.; Bauer, J. Sep. Purif. Technol. 2006, 51, 40;
(b) Volkov, A. G.; Paula, S.; Deamer, D. W. Bioelectrochem. Bioenerg. 1997, 42, 153;
(c) Nightingale, E. R. J. Phys. Chem. 1959, 63, 1381.
[15] Wimalasiri, Y.; Mossad, M.; Zou, L. Desalination 2015, 357, 178.
[16] Rashid, M.; Price, N. T.; Gracia Pinilla, M. A.; O'Shea, K. E. Water Res. 2017, 123, 353.
[17] Wang, X.; Li, Y. Chem. Commun. 2002, (7), 764.
[18] Wang, X.; Li, Y. Chem.-Eur. J. 2003, 9, 300.
[19] Zou, X.; Hou, L.; Zou, J. J. Beijing Inst. Technol. 2009, 27,20.
[20] Ministry of Environmental Protection of the People's Republic of China, HJ 535-2009, Water Quality-Determination of Ammonia Nitrogen-Nessler's Reagent Spectrophotometry, 2009. (中华人民共和国环境保护部, HJ 535-2009, 水质氨氮的测定纳氏试剂分光光度法, 2009.)
[21] Mazloomi, F.; Jalali, M. J. Environ. Chem. Eng. 2016, 4, 240.
[22] He, Y.; Lin, H.; Dong, Y.; Liu, Q.; Wang, L. Chemosphere 2016, 164, 387.
[23] Wimalasiri, Y.; Mossad, M.; Zou, L. Desalination 2015, 357, 178.

文章导航

/