硼桥联三氮杂环卡宾配位的铁分子氮配合物:合成、表征和反应性质研究
收稿日期: 2018-03-10
网络出版日期: 2018-04-08
基金资助
项目受科技部国家重点研发计划(No.2016YFA0202900)、国家自然科学基金(Nos.21725104,21690062和21432001)、中科院战略先导科技专项(No.XDB20000000)和中央高校基本科研业务费专项资金(No.222201717003)资助.
Iron Dinitrogen Complexes Supported by Tris(NHC)borate Ligand: Synthesis, Characterization, and Reactivity Study
Received date: 2018-03-10
Online published: 2018-04-08
Supported by
Project supported by the National Key Research and Development Program (No. 2016YFA0202900), the National Natural Science Foundation of China (Nos. 21725104, 21690062, 21432001), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000) and the Fundamental Research Funds for the Central Universities (No. 222201717003).
研究了氮上取代基为1-金刚烷基的苯基硼桥联三氮杂环卡宾配体在铁促进的氮气活化转化反应中的应用.通过苯基硼桥联三氮杂环卡宾亚铁氯化物[PhB(AdIm)3FeCl](1)在氮气氛下与KC8反应合成了一价铁分子氮配合物[PhB(AdIm)3Fe(N2)](2).进一步通过2与KC8和18-C-6的反应合成了零价铁分子氮配合物[K(18-C-6)(THF)]-[PhB(AdIm)3Fe(N2)](4).这些配合物均通过核磁共振、紫外吸收光谱、红外光谱、元素分析等表征,其中配合物2和4的结构经单晶X射线衍射表征确定.配合物2和4的N—N伸缩振动频率分别为1928和1807 cm-1,均为同价态铁末端分子氮配合物最低值.在过量KC8和Me3SiCl存在下,配合物1,2和4均可催化N2的还原硅基化反应,生成N(SiMe3)3.催化体系的TON可达87.
凡一明 , 程骏 , 高亚飞 , 施敏 , 邓亮 . 硼桥联三氮杂环卡宾配位的铁分子氮配合物:合成、表征和反应性质研究[J]. 化学学报, 2018 , 76(6) : 445 -452 . DOI: 10.6023/A18030095
The use of the N-adamantyl-substituted tris(NHC)borate ligand phenyltris(3-(1-adamantylimidazol-2-ylidene))borate (PhB(AdIm)3-) has enabled the preparation of the high-spin tetrahedral iron(I)-and iron(0)-N2 complexes[PhB(AdIm)3Fe(N2)] (2) and[K(18-C-6)(THF)] [PhB(AdIm)3Fe(N2)] (4), from the reduction of the ferrous precursor[PhB(AdIm)3FeCl] (1) and the iron(I) complex 2 with KC8 under N2, respectively. Single-crystal X-ray diffraction studies revealed a distorted tetrahedral coordination geometry for the iron centers in 2 and 4 with the terminally bonded N2 ligand sitting in the cavity composed by the three adamantyl groups of the borate ligand. The frequencies of the N-N stretching resonance (1928 and 1807 cm-1) of 2 and 4 are the lowest among the reported terminal N2complexes of iron(I) and iron(0), respectively. 57Fe Mössbauer spectrum (δ=0.59 mms-1; ΔEQ=1.31 mms-1) and solution magnetic susceptibility measurement (μeff=5.2(1) μB) of 2 supported its high-spin iron(I) nature. The cyclic voltammogram of 2 measured in THF shows a quasi-reversible redox waves with E1/2=-2.11 V (vs SCE), which is assignable to the corresponding redox process of[PhB(AdIm)3Fe(N2)]1-/0. In addition, the reaction of 2 with an excess amount of CO led to the formation of the bis(carbonyl)iron(I) complex,[PhB(AdIm)3Fe(CO)2] (3), that was characterized by IR spectrum, solution magnetic susceptibility measurement, 1H NMR, as well as elemental analysis. The protonation of 2 and 4 with HCl or HOTf at -78℃ only led to the formation of NH2NH2 and NH3 in low yields[less than 9(3)% and 5(3)% (per mol Fe), respectively]. However, 1, 2, and 4 proved effective catalysts for the reductive silylation of N2by KC8 and Me3SiCl to afford N(SiMe3)3 with comparable catalytic activity. The TON of these catalytic systems could reach 87 using 0.005 mmol of the catalyst, 2000 equiv. of KC8, and 2000 equiv. of Me3SiCl in 10 mL Et2O at room temperature after 24 h.
[1] (a) Winter, H. C.; Burris, R. H. Annu. Rev. Biochem. 1976, 45, 409.
(b) Bulen, W. A.; LeComte, J. R. Proc. Natl. Acad. Sci. U. S. A. 1966, 56, 979.
(c) Mortenson, L. E. Fed. Proc. 1965, 24, 233.
(d) Mortenson, L. E. Biochim. Biophys. Acta 1966, 127, 18.
(e) Hageman, R. V.; Burris, R. H. Proc. Natl. Acad. Sci. U. S. A. 1978, 75, 2699.
(f) Dean, D. R.; Bolin, J. T.; Zheng, L. J. Bacteriol. 1993, 175, 6737.
(g) Howard, J. B.; Rees, D. C. Annu. Rev. Biochem. 1994, 63, 235.
(h) Kim, J.; Rees, D. C. Biochemistry 1994, 33, 389.
(i) Wang, Y.-S.; Li, J.-L. Prog. Nat. Sci. 2000, 10, 481. (王友绍, 李季伦, 自然科学进展, 2000, 10, 481.)
[2] (a) Spatzal, T.; Aksoyoglu, M.; Zhang, L.; Andrade, S. L. A.; Schleicher, E.; Weber, S.; Rees, D. C.; Einsle, O. Science 2011, 334, 940.
(b) Lancaster, K. M.; Roemelt, M.; Ettenhuber, P.; Hu, Y.; Ribbe, M. W.; Neese, F.; Bergmann, U.; DeBeer, S. Science 2011, 334, 974.
(c) Lancaster, K. M.; Hu, Y.; Bergmann, U.; Ribbe, M. W.; DeBeer, S. J. Am. Chem. Soc. 2013, 135, 610.
(d) Wiig, J. A.; Hu, Y.; Lee, C. C.; Ribbe, M. W. Science 2012, 337, 1672.
(e) Wiig, J. A.; Lee, C. C.; Hu, Y.; Ribbe, M. W. J. Am. Chem. Soc. 2013, 135, 4982.
(f) Zhang, C.-X.; Fan, H.-J.; Liu, Q.-T. Prog. Chem. 1997, 9, 266. (张纯喜, 樊红军, 刘秋田, 化学进展, 1997, 9, 266.)
(g) Chen, Q.-L.; Chen, H.-B.; Cao, Z.-X.; Zhou, Z.-H.; Wan, H.-L.; Li, Y.; Li, J.-L. Sci. China, Chem. 2014, 44, 1849. (陈全亮, 陈洪斌, 曹泽星, 周朝晖, 万惠霖, 李颖, 李季伦, 中国科学:化学, 2014, 44, 1849.)
[3] (a) Hoffman, B. M.; Lukoyanov, D.; Yang, Z.-Y.; Dean, D. R.; Seefeldt, L. C. Chem. Rev. 2014, 114, 4041.
(b) Coric, I.; Holland, P. L. J. Am. Chem. Soc. 2016, 138, 7200.
[4] (a) Rittle, J.; Peters, J. C. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 15898.
(b) Creutz, S. E.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 1105.
(c) Coric, I.; Mercado, B. Q.; Bill, E.; Vinyard, D. J.; Holland, P. L. Nature 2015, 526, 96.
(d) Ung, G.; Peters, J. C. Angew. Chem., Int. Ed. 2015, 54, 532.
(e) Ouyang, Z.-W.; Cheng, J.; Li, L.-L.; Bao, X.-L.; Deng, L. Chem.-Eur. J. 2016, 22, 14162.
[5] (a) Kastner, J.; Bl?chl, P. E. J. Am. Chem. Soc. 2007, 129, 2998.
(b) Spatzal, T.; Perez, K. A.; Einsle, O.; Howard, J. B.; Rees, D. C. Science 2014, 345, 1620.
[6] (a) Hazari, N. Chem. Soc. Rev. 2010, 39, 4044.
(b) Crossland, J. L.; Tyler, D. R. Coord. Chem. Rev. 2010, 254, 1883.
(c) Ohki, Y.; Seino, H. Dalton Trans. 2016, 45, 874.
(d) Danopoulos, A. A.; Wright, J. A.; Motherwell, W. B. Chem. Commun. 2005, 784.
(e) Pugh, D.; Wells, N. J.; Evans, D. J.; Danopoulos, A. A. Dalton Trans. 2009, 7189.
(f) Yu, R. P.; Darmon, J. M.; Hoyt, J. M.; Margulieux, G. W.; Turner, Z. R.; Chirik, P. J. ACS Catal. 2012, 2, 1760.
(g) Bartholomew, E. R.; Volpe, E. C.; Wolczanski, P. T.; Lobkovsky, E. B.; Cundari, T. R. J. Am. Chem. Soc. 2013, 135, 3511.
[7] (a) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39.
(b) Glorius, F., N-Heterocyclic Carbenes in Transition Metal Catalysis, Topics in Organometallic Chemistry, Vol. 21, Springer, Berlin, 2007.
(c) Hahn, F. E.; Jahnke, M. C. Angew. Chem., Int. Ed. 2008, 47, 3122.
[8] (a) Ingleson, M. J.; Layfield, R. A. Chem. Commun. 2012, 48, 3579.
(b) Riener, K.; Haslinger, S.; Raba, A.; H??gerl, M. P.; Cokoja, M.; Herrmann, W. A.; Kühn, F. E. Chem. Rev. 2014, 114, 5215.
[9] McSkimming, A.; Harman, W. H. J. Am. Chem. Soc. 2015, 137, 8940.
[10] Cowley, R. E.; Bontchev, R. P.; Duesler, E. N.; Smith, J. M. Inorg. Chem. 2006, 45, 9771.
[11] Scepaniak, J. J.; Fulton, M. D.; Bontchev, R. P.; Duesler, E. N.; Kirk, M. L.; Smith, J. M. J. Am. Chem. Soc. 2008, 130, 10515.
[12] (a) Ouyang, Z.-W.; Meng, Y.; Cheng, J.; Xiao, J.; Gao, S.; Deng, L. Organometallics 2016, 35, 1361.
(b) Ohki, Y.; Hoshino, R.; Tatsumi, K. Organometallics 2016, 35, 1368.
[13] Mankad, N. P.; Whited, M. T.; Peters, J. C. Angew. Chem., Int. Ed. 2007, 46, 5768.
[14] Gilbert-Wilson, R.; Field, L. D.; Colbran, S. B.; Bhadbhade, M. M. Inorg. Chem. 2013, 52, 3043.
[15] Hounjet, L. J.; Adhikari, D.; Pink, M.; Carroll, P. J.; Mindiola, D. J. Z. Anorg. Allg. Chem. 2015, 641, 45.
[16] Smith, J. M. Comments Inorg. Chem. 2008, 29, 189.
[17] Hickey, A. K.; Chen, C.; Pink, M.; Smith, J. M. Organometallics 2015, 34, 4560.
[18] Lee, Y.; Mankad, N. P.; Peters, J. C. Nat. Chem. 2010, 2, 558.
[19] Komiya, S.; Akita, M.; Yoza, A.; Kasuga, N.; Fukuoka, A.; Kai, Y. J. Chem. Soc., Chem. Commun. 1993, 787.
[20] Gilbert-Wilson, R.; Field, L. D.; Colbran, S. B.; Bhadbhade, M. M. Inorg. Chem. 2013, 52, 3043.
[21] Creutz, S. E.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 1105.
[22] (a) Hills, A.; Hughes, D. A.; Jimenez-Tenorio, M.; Leigh, G. J.; Rowley, A. T. J. Chem. Soc., Dalton Trans. 1993, 3041.
(b) Hall, D. A.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1996, 3539.
[23] Gilbertson, J. D.; Szymczak, N. K.; Tyler, D. R. J. Am. Chem. Soc. 2005, 127, 10184.
[24] George, T. A.; Rose, D. J.; Chang, Y.; Chen, Q.; Zubieta, J. Inorg. Chem. 1995, 34, 1295.
[25] Li, J.-P.; Yin, J.-H.; Yu, C.; Zhang, W.-X.; Xi, Z.-F. Acta Chim. Sinica 2017, 75, 733. (李嘉鹏, 殷剑昊, 俞超, 张文雄, 席振峰, 化学学报, 2017, 75, 733.)
[26] Shiina, K. J. Am. Chem. Soc. 1972, 94, 9266.
[27] Tanaka, H.; Sasada, A.; Kouno, T.; Yuki, M.; Miyake, Y.; Nakanishi, H.; Nishibayashi, Y.; Yoshizawa, K. J. Am. Chem. Soc. 2011, 133, 3498.
[28] Liao, Q.; Saffon-Merceron, N.; Mezailles, N. Angew. Chem., Int. Ed. 2014, 53, 14206.
[29] Araake, R.; Sakadani, K.; Tada, M.; Sakai, Y.; Ohki, Y. J. Am. Chem. Soc. 2017, 139, 5596.
[30] Siedschlag, R. B.; Bernales, V.; Vogiatzis, K. D.; Planas, N.; Clouston, L. J.; Bill, E.; Gagliardi, L.; Lu, C. C. J. Am. Chem. Soc. 2015, 137, 4638.
[31] Gao, Y.-F.; Li, G.-Y.; Deng, L. J. Am. Chem. Soc. 2018, 140, 2239.
[32] Weatherburu, M. W. Anal. Chem. 1967, 39, 971.
[33] Watt, G. W.; Chrisp, J. D. Anal. Chem. 1952, 24, 2006.
/
| 〈 |
|
〉 |