收稿日期: 2018-01-23
网络出版日期: 2018-04-25
基金资助
项目受国家重大研究计划项目(GrantNos.2017YFA0204504,2016YFA0200803,2016YFB0402004)和国家自然科学基金(Nos.51673207,51373183,21575040,21775040和21775041)资助.
Research Progress of Solvent-based Smart Actuator Materials
Received date: 2018-01-23
Online published: 2018-04-25
Supported by
Project supported by the Ministry of Science and Technology of China (Grant Nos. 2017YFA0204504, 2016YFA0200803, 2016YFB0402004) and the National Natural Science Foundation of China (Grant Nos. 51673207, 51373183, 21575040, 21775040 and 21775041).
张大杰 , 刘捷 , 陈波 , 王京霞 , 江雷 . 溶剂型智能驱动材料的研究进展[J]. 化学学报, 2018 , 76(6) : 425 -435 . DOI: 10.6023/A18010035
Recently, smart actuator materials have drawn widespread research attention due to their important applications in soft robots, artificial muscles, sensors, or micro hand device preparation. In nature, there are many examples of actuator materials. For example, sea cucumbers can alter the stiffness of their dermis within seconds to obtain survival advantages and the venus flytrap can close their leaves in a second for efficient prey capture. Pinecones and flowers respond to their environment by opening and closing with the relative humidity changes. Inspired by these natural creatures, synthetic polymer microactuators such as polymer hydrogels and polymer composites are widely developed due to their important applications based on their response to external stimuli, such as light, heat, electronic, magnetic, solvent and humidity. In this work, we review the research progress of solvent-based smart actuator materials. There are mainly two kinds of solvent-actuator based on the fabrication method and actuator mechanism:one is a two-layer structure membrane formed by active layers-support layers with different expansion coefficients. The active layer is volumetrically expanded under the action of a solvent, and the support layer is a passive holder. The other is made of rigid material skeleton with a flexible material to make a single-layer composite membrane filler. The ionic gradient or the pore structure gradient of the material itself gives rise to the directional driving behavior with a varying solvent binding gradient. Otherwise, the membrane's bending drive behavior has been achieved by inducing a single material to form an infiltration gradient by a solvent infiltration process. Solvent-based smart actuator materials are prepared by introducing moisture or solvent-responsive molecules in a polymeric material to form a bilayers or monolayer structure. The material is distorted by volume deformation due to humidity or solvent field action. At present, a great deal of research work has been devoted to converting the mechanical deformation of solvent-based smart actuator materials into electric energy and developing related intelligent application in energy transformation, liquid switching, biomimicry, transportation of liquids and smart sensing. The paper presents a pioneering outlook for the further development of the solvent actuator materials.
Key words: solvent-based; research progress; actuator; intelligent
[1] Barrett, C. J.; Mamiya, J.-i.; Yager, K. G.; Ikeda, T. Soft Matter 2007, 3, 1249.
[2] Yamada, M.; Kondo, M.; Miyasato, R.; Naka, Y.; Mamiya, J.-i.; Kinoshita, M.; Shishido, A.; Yu, Y.; Barrett, C. J.; Ikeda, T. J. Mater. Chem. 2009, 19, 60.
[3] Wu, C.; Feng, J.; Peng, L.; Ni, Y.; Liang, H.; He, L.; Xie, Y. J. Mater. Chem. 2011, 21, 18584.
[4] Wang, E.; Desai, M. S.; Lee, S. W. Nano Lett. 2013, 13, 2826.
[5] Iamsaard, S.; Asshoff, S. J.; Matt, B.; Kudernac, T.; Cornelissen, J. J.; Fletcher, S. P.; Katsonis, N. Nat. Chem. 2014, 6, 229.
[6] Deng, J.; Li, J. F.; Chen, P. N.; Fang, X.; Sun, X. M.; Jiang, Y. S.; Weng, W.; Wang, B. J.; Peng, H. S. J. Am. Chem. Soc. 2016, 138, 225.
[7] Han, D. D.; Zhang, Y. L.; Ma, J. N.; Liu, Y. Q.; Han, B.; Sun, H. B. Adv. Mater. 2016, 28, 8328.
[8] Kumar, K.; Knie, C.; Bleger, D.; Peletier, M. A.; Friedrich, H.; Hecht, S.; Broer, D. J.; Debije, M. G.; Schenning, A. P. H. J. Nat. Commun. 2016, 7, 11975.
[9] Ma, C. X.; Le, X. X.; Tang, X. L.; He, J.; Xiao, P.; Zheng, J.; Xiao, H.; Lu, W.; Zhang, J. W.; Huang, Y. J.; Chen, T. Adv. Funct. Mater. 2016, 26, 8670.
[10] Rogoz, M.; Zeng, H.; Xuan, C.; Wiersma, D. S.; Wasylczyk, P. Adv. Opt. Mater. 2016, 4, 1689.
[11] Lu, X. L.; Guo, S. W.; Tong, X.; Xia, H. S.; Zhao, Y. Adv. Mater. 2017, 29, 1606467.
[12] Ma, H.; Hou, J.; Wang, X.; Zhang, J.; Yuan, Z.; Xiao, L.; Wei, Y.; Fan, S.; Jiang, K.; Liu, K. Nano Lett. 2017, 17, 421.
[13] Osada, Y.; Okuzaki, H.; Hori, H. Nature 1992, 35, 242.
[14] Ma, Y.; Zhang, Y.; Wu, B.; Sun, W.; Li, Z.; Sun, J. Angew. Chem., Int. Ed. 2011, 50, 6254.
[15] Obata, K.; Tamesue, S.; Hashimoto, K.; Mitsumata, T.; Tsubokawa, N.; Yamauchi, T. Macromol. Mater. Eng. 2015, 300, 766.
[16] Taccola, S.; Greco, F.; Sinibaldi, E.; Mondini, A.; Mazzolai, B.; Mattoli, V. Adv. Mater. 2015, 27, 1668.
[17] Chen, L. Z.; Weng, M. C.; Zhang, W.; Zhou, Z. W.; Zhou, Y.; Xia, D.; Li, J. X.; Huang, Z. G.; Liu, C. H.; Fan, S. S. Nanoscale. 2016, 8, 6877.
[18] Hamedi, M. M.; Campbell, V. E.; Rothemund, P.; Güder, F.; Christodouleas, D. C.; Bloch, J.-F.; Whitesides, G. M. Adv. Funct. Mater. 2016, 26, 2446.
[19] Kotal, M.; Kim, J.; Kim, K. J.; Oh, I. K. Adv. Mater. 2016, 28, 1610.
[20] Simaite, A.; Mesnilgrente, F.; Tondu, B.; Soueres, P.; Bergaud, C. Sensor. Actuat. B-Chem. 2016, 229, 425.
[21] Terasawa, N.; Asaka, K. Langmuir 2016, 32, 7210.
[22] Uh, K.; Yoon, B.; Lee, C. W.; Kim, J. M. ACS Appl. Mater. Interf. 2016, 8, 1289.
[23] Wang, F.; Jeon, J. H.; Kim, S. J.; Park, J. O.; Park, S. J. Mater. Chem. B 2016, 4, 5015.
[24] Magdanz, V.; Stoychev, G.; Ionov, L.; Sanchez, S.; Schmidt, O. G. Angew. Chem., Int. Ed. 2014, 53, 2673.
[25] Yao, C.; Liu, Z.; Yang, C.; Wang, W.; Ju, X. J.; Xie, R.; Chu, L. Y. Adv. Funct. Mater. 2015, 25, 2980.
[26] Asanuma, H.; Asaka, K.; Su, J.; Poubel, L.; Shahinpoor, M. Smart Mater. Struct. 2016, 25, 025015.
[27] Liu, L.; Jiang, S. H.; Sun, Y.; Agarwal, S. Adv. Funct. Mater. 2016, 26, 1021.
[28] Shi, Y.; Zhu, C.; Li, J. T.; Wei, J.; Guo, J. B. New J. Chem. 2016, 40, 7311.
[29] Xing, H. H.; Li, J.; Shi, Y.; Guo, J. B.; Wei, J. ACS Appl. Mater. Interf. 2016, 8, 9440.
[30] Shahsavan, H.; Salili, S. M.; Jakli, A.; Zhao, B. X. Adv. Mater. 2017, 29, 1604021.
[31] Sotiriou, G. A.; Blattmann, C. O.; Pratsinis, S. E. Adv. Funct. Mater. 2013, 23, 34.
[32] He, J.; Xiao, P.; Zhang, J. W.; Liu, Z. Z.; Wang, W. Q.; Qu, L. T.; Ouyang, Q.; Wang, X. F.; Chen, Y. S.; Chen, T. Adv. Mater. Interf. 2016, 3, 1600169.
[33] Song, H. J.; Lin, H. J.; Antonietti, M.; Yuan, J. Y. Adv. Mater. Interf. 2016, 3, 1500743.
[34] Zhang, Y.; Ionov, L. ACS Appl. Mater. Interf. 2014, 6, 10072.
[35] Wang, D. H.; McKenzie, R. N.; Buskohl, P. R.; Vaia, R. A.; Tan, L. S. Macromolecules 2016, 49, 3286.
[36] Lv, C.; Xia, H.; Shi, Q.; Wang, G.; Wang, Y. S.; Chen, Q. D.; Zhang, Y. L.; Liu, L. Q.; Sun, H. B. Adv. Mater. Interf. 2017, 4, 1601002.
[37] Hines, L.; Petersen, K.; Lum, G. Z.; Sitti, M. Adv. Mater. 2017, 29, 1603483.
[38] Rus, D.; Tolley, M. T. Nature 2015, 521, 467.
[39] Wehner, M.; Truby, R. L.; Fitzgerald, D. J.; Mosadegh, B.; Whitesides, G. M.; Lewis, J. A.; Wood, R. J. Nature 2016, 536, 451.
[40] Ban, J. F.; Mu, L. N.; Yang, J. H.; Chen, S. J.; Zhuo, H. T. J. Mater. Chem. A 2017, 5, 14514.
[41] Lv, J. A.; Liu, Y.; Wei, J.; Chen, E.; Qin, L.; Yu, Y. Nature 2016, 537, 179.
[42] Wani, O. M.; Zeng, H.; Priimagi, A. Nat.Commun. 2017, 8, 15546.
[43] Li, W. B.; Li, F. Y.; Li, H. Z.; Su, M.; Gao, M.; Li, Y. A.; Su, D.; Zhang, X. Y.; Song, Y. L. ACS Appl. Mater. Interf. 2016, 8, 12369.
[44] Shintake, J.; Rosset, S.; Schubert, B.; Floreano, D.; Shea, H. Adv. Mater. 2016, 28, 231.
[45] Yao, C.; Liu, Z.; Yang, C.; Wang, W.; Ju, X. J.; Xie, R.; Chu, L. Y. ACS Appl. Mater. Interf. 2016, 8, 21721.
[46] Zhao, Z.; Wang, H.; Shang, L.; Yu, Y.; Fu, F.; Zhao, Y.; Gu, Z. Adv. Mater. 2017, 1704569.
[47] Elbaum, R.; Zaltzman, L.; Burgert, I.; Fratzl, P. Science 2007, 316, 884.
[48] Fratzl, P.; Barth, F. G. Nature 2009, 462, 442.
[49] Armon, S.; Efrati, E.; Kupferman, R.; Sharon, E. Science 2011, 333, 1726.
[50] Erb, R. M.; Sander, J. S.; Grisch, R.; Studart, A. R. Nat. Commun. 2013, 4, 1712.
[51] Kuang, M.; Wang, J.; Jiang, L. Chem. Soc. Rev. 2016, 45, 6833.
[52] Xu, D. D. M.S. Thesis, Zhengzhou University, Zhengzhou, 2015(in Chinese). (徐冬冬, 硕士论文, 郑州大学, 郑州, 2016.)
[53] Zhang, L. D.; Chizhik, S.; Wen, Y. Z.; Naumov, P. Adv. Funct. Mater. 2016, 26, 1040.
[54] Arazoe, H.; Miyajima, D.; Akaike, K.; Araoka, F.; Sato, E.; Hikima, T.; Kawamoto, M.; Aida, T. Nat. Mater. 2016, 15, 1084.
[55] Wong, W. S. Y.; Li, M. F.; Nisbet, D. R.; Craig, V. S. J.; Wang, Z. K.; Tricoli, A. Sci. Adv. 2016, 2, 1600417.
[56] Zhao, Q.; Heyda, J.; Dzubiella, J.; Tauber, K.; Dunlop, J. W. C.; Yuan, J. Y. Adv. Mater. 2015, 27, 2913.
[57] Agnarsson, I.; Dhinojwala, A.; Sahni, V.; Blackledge, T. A. J. Exp. Biol. 2009, 212, 1990.
[58] Yang, Q. L.; Kang, X. M.; Sun, J.; Wei, L. H.; Ma, Z. Chem. Ind. Eng. Prog. 2015, 34, 3075. (杨倩丽, 康晓明, 孙静, 魏柳荷, 马志, 化工进展, 2015, 34, 3075.)
[59] Kim, C. C.; Lee, H. H.; Oh, K. H.; Sun, J. Y. Science 2016, 353, 682.
[60] Stoychev, G.; Guiducci, L.; Turcaud, S.; Dunlop, J. W. C.; Ionov, L. Adv. Funct. Mater. 2016, 26, 7733.
[61] Cheng, H. H.; Liu, J.; Zhao, Y.; Hu, C. G.; Zhang, Z. P.; Chen, N.; Jiang, L.; Qu, L. T. Angew. Chem., Int. Ed. 2013, 52, 10482.
[62] Ji, M. Y.; Jiang, N.; Chang, J.; Sun, J. Q. Adv. Funct. Mater. 2014, 24, 5412.
[63] Han, D. D.; Zhang, Y. L.; Jiang, H. B.; Xia, H.; Feng, J.; Chen, Q. D.; Xu, H. L.; Sun, H. B. Adv. Mater. 2015, 27, 332.
[64] Liu, Y. Q.; Ma, J. N.; Liu, Y.; Han, D. D.; Jiang, H. B.; Mao, J. W.; Han, C. H.; Jiao, Z. Z.; Zhang, Y. L. Opt. Mater. Express 2017, 7, 2617.
[65] Gu, Y. Q.; Huang, X. Y.; Wiener, C. G.; Vogt, B. D.; Zacharia, N. S. ACS Appl. Mater. Interf. 2015, 7, 1848.
[66] Zhang, L. D.; Naumov, P. Angew. Chem., Int. Ed. 2015, 54, 8642.
[67] He, S. S.; Chen, P. N.; Qiu, L. B.; Wang, B. J.; Sun, X. M.; Xu, Y. F.; Peng, H. S. Angew. Chem., Int. Ed. 2015, 54, 14880.
[68] Zhao, Q.; Dunlop, J. W. C.; Qiu, X. L.; Huang, F. H.; Zhang, Z. B.; Heyda, J.; Dzubiella, J.; Antonietti, M.; Yuan, J. Y. Nat. Commun. 2014, 5, 5293.
[69] Kitazawa, Y.; Ueno, K.; Watanabe, M. Chem. Rec. 2017, 17, 1.
[70] Lin, H. J.; Gong, J.; Eder, M.; Schuetz, R.; Peng, H. S.; Dunlop, J. W. C.; Yuan, J. Y. Adv. Mater. Interf. 2017, 4, 1600768.
[71] Khan, M. K.; Hamad, W. Y.; MacLachlan, M. J. Adv. Mater. 2014, 26, 2323.
[72] Ilmain, F.; Tanaka, T.; Kokufuta, E. Nature 1991, 349, 400.
[73] Ma, M. M.; Guo, L.; Anderson, D. G.; Langer, R. Science 2013, 339, 186.
[74] Zhang, L.; Liang, H.; Jacob, J.; Naumov, P. Nat. Commun. 2015, 6, 7429.
[75] Zhao, Q.; Yang, X.; Ma, C.; Chen, D.; Bai, H.; Li, T.; Yang, W.; Xie, T. Mater. Horiz. 2016, 3, 422.
[76] Hu, X. B.; Zhou, J.; Vatankhah-Varnosfaderani, M.; Daniel, W. F. M.; Li, Q. X.; Zhushma, A. P.; Dobrynin, A. V.; Sheiko, S. S. Nat. Commun. 2016, 7, 12919.
[77] Liu, Y. Y.; Xu, B.; Sun, S. T.; Wei, J.; Wu, L. M.; Yu, Y. L. Adv. Mater. 2017, 29, 1604792.
[78] Kobatake, S.; Takami, S.; Muto, H.; Ishikawa, T.; Irie, M. Nature 2007, 446, 778.
[79] Iamsaard, S.; Anger, E.; Asshoff, S. J.; Depauw, A.; Fletcher, S. P.; Katsonis, N. Angew. Chem., Int. Ed. 2016, 55, 9908.
[80] Wang, H. S.; Cho, J.; Song, D. S.; Jang, J. H.; Jho, J. Y.; Park, J. H. ACS Appl. Mater. Interf. 2017, 9, 21998.
[81] Song, S. H.; Lee, J. Y.; Rodrigue, H.; Choi, I. S.; Kang, Y. J.; Ahn, S. H. Sci. Rep. 2016, 6, 21118.
[82] Islam, M. R.; Li, X.; Smyth, K.; Serpe, M. J. Angew. Chem., Int. Ed. 2013, 52, 10330.
[83] Lee, W. E.; Jin, Y. J.; Park, L. S.; Kwak, G. Adv. Mater. 2012, 24, 5604.
[84] Chen, M. L.; Frueh, J.; Wang, D. L.; Lin, X. K.; Xie, H.; He, Q. Sci. Rep. 2017, 7, 769.
[85] Lee, S.-W.; Prosser, J. H.; Purohit, P. K.; Lee, D. ACS Macro Lett. 2013, 2, 960.
[86] Zhang, F. L.; Fan, J. B.; Zhang, P. C.; Liu, M. J.; Meng, J. X.; Jiang, L.; Wang, S. Npg Asia Mater. 2017, 9, e380.
[87] Chen, M.; Hagedorn, K.; Colfen, H.; Polarz, S. Adv. Mater. 2017, 29, 1603356.
[88] Liu, J.-c.; Shang, Y.-y.; Zhang, D.-j.; Xie, Z.; Hu, R.-x.; Wang, J.-x. Chin. J. Polym. Sci. 2017, 35, 1043.
[89] Wu, H.; Kuang, M.; Cui, L.; Tian, D.; Wang, M.; Luan, G.; Wang, J.; Jiang, L. Chem. Commun. 2016, 52, 5924.
[90] Boudot, M.; Elettro, H.; Grosso, D. ACS Nano 2016, 10, 10031.
[91] Chen, X.; Mahadevan, L.; Driks, A.; Sahin, O. Nat. Nanotechnol. 2014, 9, 137.
[92] Zhao, F.; Liang, Y.; Cheng, H. H.; Jiang, L.; Qu, L. T. Energ. Environ. Sci. 2016, 9, 912.
[93] Chen, X.; Goodnight, D.; Gao, Z. H.; Cavusoglu, A. H.; Sabharwal, N.; DeLay, M.; Driks, A.; Sahin, O. Nat. Commun. 2015, 6, 7346.
[94] Li, B.; Du, T.; Yu, B.; van der Gucht, J.; Zhou, F. Small 2015, 11, 3494.
[95] Qin, M.; Huang, Y.; Li, Y. N.; Su, M.; Chen, B. D.; Sun, H.; Yong, P. Y.; Ye, C. Q.; Li, F. Y.; Song, Y. L. Angew. Chem., Int. Ed. 2016, 55, 6911.
[96] Lu, X.; Zhang, Z. T.; Li, H. P.; Sun, X. M.; Peng, H. S. J. Mater. Chem. A 2014, 2, 17272.
[97] Zhang, L. D.; Naumov, P.; Du, X. M.; Hu, Z. G.; Wang, J. Adv. Mater. 2017, 29, 1702231.
[98] Wu, Z. L.; Moshe, M.; Greener, J.; Therien-Aubin, H.; Nie, Z.; Sharon, E.; Kumacheva, E. Nat. Commun. 2013, 4, 1586.
[99] Mao, Y. F.; Zheng, Y.; Li, C.; Guo, L.; Pan, Y. N.; Zhu, R.; Xu, J.; Zhang, W. H.; Wu, W. G. Adv. Mater. 2017, 29, 1606482.
[100] Jeong, J.; Cho, Y.; Lee, S. Y.; Gong, X. T.; Kamien, R. D.; Yang, S.; Yodh, A. G. Soft Matter 2017, 13, 956.
[101] Cheng, H. H.; Hu, Y.; Zhao, F.; Dong, Z. L.; Wang, Y. H.; Chen, N.; Zhang, Z. P.; Qu, L. T. Adv. Mater. 2014, 26, 2909.
[102] de Haan, L. T.; Verjans, J. M. N.; Broer, D. J.; Bastiaansen, C. W. M.; Schenning, A. P. H. J. J. Am. Chem. Soc. 2014, 136, 10585.
[103] Zhou, Z.; Li, Q.; Chen, L.; Liu, C.; Fan, S. Acta Chim. Sinica 2016, 74, 738. (周智伟, 李庆威, 陈鲁倬, 刘长洪, 范守善, 化学学报, 2016, 74, 738.)
/
〈 |
|
〉 |