介电松弛谱法用于高分子链动力学行为的研究
收稿日期: 2018-04-06
网络出版日期: 2018-05-28
基金资助
项目受国家自然科学基金(Nos.21574053,91333103)资助.
Dielectric Spectroscopy for the Study of the Dynamic Behavior of Polymer Chains
Received date: 2018-04-06
Online published: 2018-05-28
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21574053, 91333103).
介电松弛谱法是研究高分子链松弛运动的一种有效方法.它可反映出分子的特征结构信息,对揭示高分子链动力学行为的本质及规律、调控其凝聚态结构意义重大.本文从介电松弛谱理论出发,总结出几种常用的介电特征参数以及用于解析这些参数的数学模型.通过介电松弛谱中高分子链的弛豫过程的解析,可得出与高分子链运动相关的特征参数,如介电常数、介电松弛强度以及链运动的特征松弛时间,从而判断链松弛运动的尺寸小大,松弛的基团以及链运动的协同过程;还可与Arrenius方程、Vogel-Tammann-Fulcher(VFT)方程、统计学模型建立联系,获得界面构造、分子内部组成、链动力学行为同环境的依存性等信息,为高分子材料的分子设计、开发与应用奠定高分子物理理论基础.
雷冬 , 陆丹 . 介电松弛谱法用于高分子链动力学行为的研究[J]. 化学学报, 2018 , 76(8) : 605 -616 . DOI: 10.6023/A18040132
Dielectric spectroscopy is a great useful method in investigating polymeric chains dynamic. It can reflect the characteristic structural information of molecules and is of great significance for revealing the nature and laws of the dynamic behavior of polymer chains as well as regulating their condensed structure. In this paper, based on the theory of dielectric spectroscopy, we conclude some kinds of common dielectric parameters and mathematic functions which is used to analyse the dielectric parameters. Therefore, the dielectric parameters of the polymeric chains, such as the dielectric constant, the dielectric relaxation strength, and the characteristic relaxation time of polymeric chains, can be obtained by analysing the relaxation process of the polymeric chains to estimate the scale of relaxation process, the relaxation groups and the cooperation process of side chains. Of course, it is very useful to connect the dielectric parameters with the Arrenius function, the Vogel-Tammann-Fulcher (VFT) and the statistics model to obtain the interface construction, the molecular internal composition, the dynamic behaviors of polymeric chain, and the dependence on environment etc., in order to establish a polymer physics theoretical foundation for the further macromolecule design, development and application for polymer materials.
Key words: dielectric spectroscopy; polymer; dynamic; feature parameters; relaxation
[1] Williams, G.; Thomas, D. K. Novocontrol Applications Note.
[2] Schönhals, A. Novocontrol Application Notes.
[3] Mijovic, J.; Fitz, B. D. Application Notes, Novocontrol.
[4] Kremer, F. Non-Cryst. Solids 2002, 305, 1.
[5] Kremer, F.; Schönhals, A. Broadband Dielectric Spectroscopy, Springer, 2003, pp. 21~30.
[6] Yin, Z.-W. Dielectric Physics, Science Press, Beijing, 2003, pp. 566~567. (殷之文, 电介质物理学, 科学出版社, 北京, 2003, pp. 566~567.)
[7] Davidson, D. W.; Cole, R. H. J. Chem. Phys. 1950, 18, 1417.
[8] Davidson, D. W.; Cole, R. H. J. Chem. Phys. 1951, 19, 1484.
[9] Cole, K. S.; Cole, R. H. J. Chem. Phys. 1941, 9, 341.
[10] Havriliak, S.; Negami, S. Polymer 1967, 8, 161.
[11] Oikawa, S.; Sasaki, A.; Toyota, T. Proceedings of International Conference on Computer Communication and Management, Sydney, Australia, 1998, pp. 75~82.
[12] Qian, B.-G.; Xu, G.-F.; Yu, F.-S. Transition and Relaxation of Polymers, Science Press, Beijing, 1986, p. 103. (钱保功, 许观藩, 于赋生, 高聚物的转变与松驰, 科学出版社, 北京, 1986, p. 103.)
[13] Zhao, K.-S. Dielectric Spectroscopy Methods and Applications, Chemical Industry Press, Beijing, 2008, p. 20. (赵孔双, 介电松弛谱方法及应用, 化学工业出版社, 北京, 2008, p. 20.)
[14] Mijovic, J.; Fitz, B. D. Mater. Sci. 1998, 2, 1531.
[15] Liu, Y.; Li, Y.; Xiong, H. ACS Macro Lett. 2013, 2, 45.
[16] Adachi, K.; Kotaka, T. Prog. Polym. Sci. 1993, 18, 585.
[17] Zimm, B. H. J. Chem. Phys. 1956, 24, 269.
[18] Ngai, K. L.; Plazek, D. J.; Roland, C. M. Phys. Rev. Lett. 2009, 103, 159801.
[19] Sokolov, A. P.; Schweizer, K. S. Phys. Rev. Lett. 1998, 80, 1453.
[20] Schönhals, A.; Kremer, F.; Hofmann, A. Phys. Rev. Lett. 1993, 70, 3459.
[21] Dudowicz, J.; Freed, K. F.; Douglas, J. F. J. Phys. Chem. B 2005, 109, 21285.
[22] Maxwell, A. S.; Monnerie, L.; Ward, I. M. Polymer 1998, 39, 6851.
[23] Starkweather, H. W. Polymer 1991, 32, 2443.
[24] Starkweather, H. W. Macromolecules 1988, 21, 1798.
[25] Starkweather, H. W. Macromolecules 1981, 14, 1277.
[26] Wang, F.-F.; Zhang, P.-H.; Gao, M.-Z. Acta Phys. Sin. 2014, 63, 364. (王飞风, 张沛红, 高铭泽, 物理学报, 2014, 63, 364.)
[27] Rozanski, S. A.; Kremer, F.; Köberle, P. Macromol. Chem. Phys. 1995, 196, 877.
[28] Gondaliya, N.; Kanchan, D. K.; Sharma, P. Polym. Compos. 2012, 33, 2195.
[29] Ribelles, J. L. G.; Duenas, J. M. M.; Pradas, M. M. J. Appl. Polym. Sci. 1989, 11, 45.
[30] Zhang, H.; Hanai, T.; Koizumi, N. Bull. Inst. Chem. Res., Kyoto Univ. 1983, 61, 265.
[31] Adachi, K.; Kotaka, T. Pure Appl. Chem. 1997, 69, 125.
[32] Lou, N.; Wang, Y.; Li, X. Macromolecules 2013, 46, 3160.
[33] Gao, M.; Zhang, P.; Wang, F. IEEE 2014, pp. 234~237.
[34] Lin, S.-J.; Huang, Y.; Xie, D.-R. Acta Phys. Sin. 2016, 65, 296. (林生军, 黄印, 谢东日, 物理学报, 2016, 65, 296.)
[35] Szazdi, L.; Agnes, A.; Pukanszky, B. J. Macromol. Mater. Eng. 2006, 291, 858.
[36] Zhao, K.; Yasuhiro, M.; Asaka, K. J. Membr. Sci. 1991, 64, 163.
[37] Schick, C.; Sukhorukov, D.; Schönhals, A. Macromol. Chem. Phys. 2001, 202, 1398.
[38] Jin, W.-F. Dielectric Physics, Mechanical Industry Press, Beijing, 1997. (金维芳, 电介质物理学, 机械工业出版社, 北京, 1997.)
[39] Kremer, F.; Schönhals, P. D. A. Broadband Dielectric Spectroscopy, Springer, 2003, pp. 350~350.
[40] He, M.-J.; Chen, W.-X.; Dong, X.-X. Polymer Physics, Fudan University Press, Shanghai, 2007. (何曼君, 陈维孝, 董西侠, 高分子物理, 复旦大学出版社, 上海, 2007.).
[41] Alvarez, F.; Alegra, A.; Colmenero, J. Phys. Rev. B:Condens. 1991, 44, 7306.
[42] Liu, F.-Q.; Tang, X.-Y. Polymer Physics, Higher Education Press, Beijing, 2004. (刘凤岐, 汤心颐, 高分子物理, 高等教育出版社, 北京, 2004.)
[43] Elmahdy, M. M.; Chrissopoulou, K.; Afratis, A. Macromolecules 2006, 39, 5170.
[44] Vallerien, S. U.; Kremer, F.; Boeffel, C. Liq. Cryst. 1989, 4, 79.
[45] Li, T.; Huang, L.; Bai, Z. Polymer 2016, 88, 71.
[46] Li, T.; Liu, B.; Zhang, H. Polymer 2016, 103, 299.
[47] Hanai, T. Kolloid Z 1961, 177, 57.
/
〈 |
|
〉 |