综述

介电松弛谱法用于高分子链动力学行为的研究

  • 雷冬 ,
  • 陆丹
展开
  • 吉林大学化学学院 超分子结构与材料国家重点实验室 长春 130012
雷冬,吉林大学化学学院在读硕士研究生.2017年毕业于东北石油大学化学化工学院并获得工学学士学位.同年9月进入吉林大学化学学院攻读硕士研究生,师从陆丹教授.主要应用宽频介电松弛谱仪,静/动联用光散射技术,从事共轭高分子的松弛与转变,以及溶液动力学的研究;陆丹,理学博士,教授,博士生导师.1993年考入中国科学院长春应用化学研究所,高分子化学与物理国家重点实验室攻读硕士学位后直博.研究兴趣主要包括:共轭高分子链构象变化对载流子迁移特性影响的研究;外电场对共轭高分子有序结构的调控及载流子迁移特性的影响;共轭高分子PFO链构象及其凝聚态结构的标度律研究

收稿日期: 2018-04-06

  网络出版日期: 2018-05-28

基金资助

项目受国家自然科学基金(Nos.21574053,91333103)资助.

Dielectric Spectroscopy for the Study of the Dynamic Behavior of Polymer Chains

  • Lei Dong ,
  • Lu Dan
Expand
  • State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012

Received date: 2018-04-06

  Online published: 2018-05-28

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21574053, 91333103).

摘要

介电松弛谱法是研究高分子链松弛运动的一种有效方法.它可反映出分子的特征结构信息,对揭示高分子链动力学行为的本质及规律、调控其凝聚态结构意义重大.本文从介电松弛谱理论出发,总结出几种常用的介电特征参数以及用于解析这些参数的数学模型.通过介电松弛谱中高分子链的弛豫过程的解析,可得出与高分子链运动相关的特征参数,如介电常数、介电松弛强度以及链运动的特征松弛时间,从而判断链松弛运动的尺寸小大,松弛的基团以及链运动的协同过程;还可与Arrenius方程、Vogel-Tammann-Fulcher(VFT)方程、统计学模型建立联系,获得界面构造、分子内部组成、链动力学行为同环境的依存性等信息,为高分子材料的分子设计、开发与应用奠定高分子物理理论基础.

本文引用格式

雷冬 , 陆丹 . 介电松弛谱法用于高分子链动力学行为的研究[J]. 化学学报, 2018 , 76(8) : 605 -616 . DOI: 10.6023/A18040132

Abstract

Dielectric spectroscopy is a great useful method in investigating polymeric chains dynamic. It can reflect the characteristic structural information of molecules and is of great significance for revealing the nature and laws of the dynamic behavior of polymer chains as well as regulating their condensed structure. In this paper, based on the theory of dielectric spectroscopy, we conclude some kinds of common dielectric parameters and mathematic functions which is used to analyse the dielectric parameters. Therefore, the dielectric parameters of the polymeric chains, such as the dielectric constant, the dielectric relaxation strength, and the characteristic relaxation time of polymeric chains, can be obtained by analysing the relaxation process of the polymeric chains to estimate the scale of relaxation process, the relaxation groups and the cooperation process of side chains. Of course, it is very useful to connect the dielectric parameters with the Arrenius function, the Vogel-Tammann-Fulcher (VFT) and the statistics model to obtain the interface construction, the molecular internal composition, the dynamic behaviors of polymeric chain, and the dependence on environment etc., in order to establish a polymer physics theoretical foundation for the further macromolecule design, development and application for polymer materials.

参考文献

[1] Williams, G.; Thomas, D. K. Novocontrol Applications Note.
[2] Schönhals, A. Novocontrol Application Notes.
[3] Mijovic, J.; Fitz, B. D. Application Notes, Novocontrol.
[4] Kremer, F. Non-Cryst. Solids 2002, 305, 1.
[5] Kremer, F.; Schönhals, A. Broadband Dielectric Spectroscopy, Springer, 2003, pp. 21~30.
[6] Yin, Z.-W. Dielectric Physics, Science Press, Beijing, 2003, pp. 566~567. (殷之文, 电介质物理学, 科学出版社, 北京, 2003, pp. 566~567.)
[7] Davidson, D. W.; Cole, R. H. J. Chem. Phys. 1950, 18, 1417.
[8] Davidson, D. W.; Cole, R. H. J. Chem. Phys. 1951, 19, 1484.
[9] Cole, K. S.; Cole, R. H. J. Chem. Phys. 1941, 9, 341.
[10] Havriliak, S.; Negami, S. Polymer 1967, 8, 161.
[11] Oikawa, S.; Sasaki, A.; Toyota, T. Proceedings of International Conference on Computer Communication and Management, Sydney, Australia, 1998, pp. 75~82.
[12] Qian, B.-G.; Xu, G.-F.; Yu, F.-S. Transition and Relaxation of Polymers, Science Press, Beijing, 1986, p. 103. (钱保功, 许观藩, 于赋生, 高聚物的转变与松驰, 科学出版社, 北京, 1986, p. 103.)
[13] Zhao, K.-S. Dielectric Spectroscopy Methods and Applications, Chemical Industry Press, Beijing, 2008, p. 20. (赵孔双, 介电松弛谱方法及应用, 化学工业出版社, 北京, 2008, p. 20.)
[14] Mijovic, J.; Fitz, B. D. Mater. Sci. 1998, 2, 1531.
[15] Liu, Y.; Li, Y.; Xiong, H. ACS Macro Lett. 2013, 2, 45.
[16] Adachi, K.; Kotaka, T. Prog. Polym. Sci. 1993, 18, 585.
[17] Zimm, B. H. J. Chem. Phys. 1956, 24, 269.
[18] Ngai, K. L.; Plazek, D. J.; Roland, C. M. Phys. Rev. Lett. 2009, 103, 159801.
[19] Sokolov, A. P.; Schweizer, K. S. Phys. Rev. Lett. 1998, 80, 1453.
[20] Schönhals, A.; Kremer, F.; Hofmann, A. Phys. Rev. Lett. 1993, 70, 3459.
[21] Dudowicz, J.; Freed, K. F.; Douglas, J. F. J. Phys. Chem. B 2005, 109, 21285.
[22] Maxwell, A. S.; Monnerie, L.; Ward, I. M. Polymer 1998, 39, 6851.
[23] Starkweather, H. W. Polymer 1991, 32, 2443.
[24] Starkweather, H. W. Macromolecules 1988, 21, 1798.
[25] Starkweather, H. W. Macromolecules 1981, 14, 1277.
[26] Wang, F.-F.; Zhang, P.-H.; Gao, M.-Z. Acta Phys. Sin. 2014, 63, 364. (王飞风, 张沛红, 高铭泽, 物理学报, 2014, 63, 364.)
[27] Rozanski, S. A.; Kremer, F.; Köberle, P. Macromol. Chem. Phys. 1995, 196, 877.
[28] Gondaliya, N.; Kanchan, D. K.; Sharma, P. Polym. Compos. 2012, 33, 2195.
[29] Ribelles, J. L. G.; Duenas, J. M. M.; Pradas, M. M. J. Appl. Polym. Sci. 1989, 11, 45.
[30] Zhang, H.; Hanai, T.; Koizumi, N. Bull. Inst. Chem. Res., Kyoto Univ. 1983, 61, 265.
[31] Adachi, K.; Kotaka, T. Pure Appl. Chem. 1997, 69, 125.
[32] Lou, N.; Wang, Y.; Li, X. Macromolecules 2013, 46, 3160.
[33] Gao, M.; Zhang, P.; Wang, F. IEEE 2014, pp. 234~237.
[34] Lin, S.-J.; Huang, Y.; Xie, D.-R. Acta Phys. Sin. 2016, 65, 296. (林生军, 黄印, 谢东日, 物理学报, 2016, 65, 296.)
[35] Szazdi, L.; Agnes, A.; Pukanszky, B. J. Macromol. Mater. Eng. 2006, 291, 858.
[36] Zhao, K.; Yasuhiro, M.; Asaka, K. J. Membr. Sci. 1991, 64, 163.
[37] Schick, C.; Sukhorukov, D.; Schönhals, A. Macromol. Chem. Phys. 2001, 202, 1398.
[38] Jin, W.-F. Dielectric Physics, Mechanical Industry Press, Beijing, 1997. (金维芳, 电介质物理学, 机械工业出版社, 北京, 1997.)
[39] Kremer, F.; Schönhals, P. D. A. Broadband Dielectric Spectroscopy, Springer, 2003, pp. 350~350.
[40] He, M.-J.; Chen, W.-X.; Dong, X.-X. Polymer Physics, Fudan University Press, Shanghai, 2007. (何曼君, 陈维孝, 董西侠, 高分子物理, 复旦大学出版社, 上海, 2007.).
[41] Alvarez, F.; Alegra, A.; Colmenero, J. Phys. Rev. B:Condens. 1991, 44, 7306.
[42] Liu, F.-Q.; Tang, X.-Y. Polymer Physics, Higher Education Press, Beijing, 2004. (刘凤岐, 汤心颐, 高分子物理, 高等教育出版社, 北京, 2004.)
[43] Elmahdy, M. M.; Chrissopoulou, K.; Afratis, A. Macromolecules 2006, 39, 5170.
[44] Vallerien, S. U.; Kremer, F.; Boeffel, C. Liq. Cryst. 1989, 4, 79.
[45] Li, T.; Huang, L.; Bai, Z. Polymer 2016, 88, 71.
[46] Li, T.; Liu, B.; Zhang, H. Polymer 2016, 103, 299.
[47] Hanai, T. Kolloid Z 1961, 177, 57.

文章导航

/