研究论文

柔性树枝形大分子溶液的自洽场理论计算

  • 石梦 ,
  • 杨颖梓 ,
  • 邱枫
展开
  • 复旦大学高分子科学系 聚合物分子工程国家重点实验室 上海 200433

收稿日期: 2018-05-09

  网络出版日期: 2018-06-22

基金资助

项目受国家自然科学基金(Nos.21320102005,21774026)和中国人民共和国科学技术部(Nos.2016YFA0203301)资助.

Self-Consistent Field Theory Studies of Flexible Dendrimer in Good Solvent

  • Shi Meng ,
  • Yang Yingzi ,
  • Qiu Feng
Expand
  • State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433

Received date: 2018-05-09

  Online published: 2018-06-22

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21320102005, 21774026) and Ministry of Science and Technology of the People's Republic of China (No. 2016YFA0203301).

摘要

树枝形大分子是一种新型高分子材料,其浓度分布、末端官能团分布和分子尺寸决定了材料的性质.在柔性支化臂条件下,推导了均聚物树枝形大分子在溶剂中的自洽场理论,计算了不同代数G的树枝形大分子的链节浓度分布.计算结果表明:(1)在良溶剂(或绝热溶剂)中,柔性支化臂的树枝形大分子符合"dense-core"模型,链节浓度沿径向缓慢下降;(2)由于柔性链的折回构象,末端链没有向球形分子的外缘球壳层聚集的倾向;(3)不同代数的支化臂所受的拉伸强度不同,近中心处的第一代支化臂所受的拉伸程度最大;(4)自洽场计算与Flory平均场理论标度律估算结果一致,得到树枝形大分子在良溶剂中的分子尺寸具有标度律R~(GP1/5N2/5,其中P是单个支化臂的聚合度,N是分子的总的链段数;(5)在G固定的情况下,该标度律简化为R~P3/5.

本文引用格式

石梦 , 杨颖梓 , 邱枫 . 柔性树枝形大分子溶液的自洽场理论计算[J]. 化学学报, 2018 , 76(9) : 715 -722 . DOI: 10.6023/A18050192

Abstract

Dendrimers are a class of novel polymer materials, which have received a lot of attention in past decades. The property of a dendrimer material strongly depends on the conformational details of the molecules, including the monomer density distribution, the functional end-group distribution, and the molecular size. In this paper, we consider a dendrimer composed of flexible and long spacers, immersed in the athermal or good solvent. A self-consistent field theory (SCFT) with a pre-averaged excluded volume potential is employed to calculate the density profiles of the segments and the radius of gyration R of the dendrimers. The stretched conformation of the spacers, and the scaling laws between the dendrimer size and its topologic parameters are analyzed. Our main results are:(1) The segment density of the dendrimers obeys the "dense-core" model, and decreases smoothly along the radial direction. (2) Due to the folding-back conformation, the local density of the end-segments is proportional to the local segment density. The density profile of the end-segments does not have a lifted peak at the outer layer of the spherical molecule. (3) The conformation of the spacers with lower generation numbers is strongly stretched in the central region where the segments are crowded. The first-generation spacers are mostly stretched. However, the spacers with higher generation numbers are much weakly stretched in the outer region. (4) Our self-consistent field theory calculations give the scaling law of the dendrimer size R~(GP)1/5N2/5, where G is the generation number of the dendrimer, P is the spacer segment number, and N is the total segment number. This agrees with the Flory mean field calculation for dendrimer based on full segment number. But it disagrees with the pioneer theories based on a linear side chains and the results from Monte Carlo simulations, which gave R~(GP)2/5N1/5. This disagreement is attributed to the limited bond length in simulations and the unlimited stretchable spacers in SCFT. (5) If G is fixed, the scaling law is simplified to R~P3/5 in good solvent, which agrees with the pioneer theories.

参考文献

[1] Astruc, D.; Boisselier, E.; Ornelas, C. Chem. Rev. 2010, 110, 1857.
[2] Vincent, L.; Varet, J.; Pille, J.-Y.; Bompais, H.; Opolon, P.; Maksimenko, A.; Malvy, C.; Mirshahi, M.; Lu, H.; Vannier, J.-P.; Soria, C.; Li, H. Int. J. Cancer 2003, 105, 419.
[3] Jain, S.; Kaur, A.; Puri, R.; Utreja, P.; Jain, A.; Bhide, M.; Ratnam, R.; Singh, V.; Patil, A. S.; Jayaraman, N.; Kaushik, G.; Yadav, S.; Khanduja, K. L. Eur. J. Med. Chem. 2010, 45, 4997.
[4] Boas, U.; Heegaard, P. M. H. Chem. Soc. Rev. 2004, 33, 43.
[5] Zhang, S.; Yang, J.; Liu, M.; Lü, S.; Gao, C.; Wu, C.; Zhu, Z. Acta Chim. Sinica 2016, 74, 401. (张少飞, 杨建东, 柳明珠, 吕少瑜, 高春梅, 吴灿, 朱召彦, 化学学报, 2016, 74, 401.)
[6] Zhang, W.; Xu, N.; Yao, Z.; Li, K.; Zhu, Y.; Chen, L.; Ye, W.; Deng, W. Chin. J. Org. Chem. 2016, 36, 2039. (张薇, 徐妮为, 姚子健, 李宽, 朱玉, 陈良艳, 叶文玲, 邓维, 有机化学, 2016, 36, 2039.)
[7] Buhleier, G. E.; Wehner, W.; Vögtle, F. Synthesis-Stuttgart. 1978, 2, 155.
[8] Jana, C.; Jayamurugan, G.; Ganapathy, R.; Maiti, P. K.; Jayaraman, N.; Sood, A. K. J. Chem. Phys. 2006, 124, 204719.
[9] Porcar, L.; Hong, K.; Butler, P. D.; Herwig, K. W.; Smith, G. S.; Liu, Y.; Chen, W. R. J. Phys. Chem. B 2010, 114, 1751.
[10] Prosa, T. J.; Bauer, B. J.; Amis, E. J. Macromolecules 2001, 34, 4897.
[11] Pötschke, D.; Ballauf, M.; Lindner, P.; Fischer, M.; Vögtle, F. J. Appl. Cryst. 2000, 33, 605.
[12] Rosenfeldt, S.; Dingenouts, N.; Ballauf, M.; Werner, N.; Vögtle, F.; Lindner, P. Macromolecules 2002, 35, 8098.
[13] Mallamace, F.; Canetta, E.; Lombardo, D.; Mazzaglia, A.; Romeo, A.; Scolaro, L. M.; Maino, G. Physica A 2002, 304, 235.
[14] Prosa, T. J.; Bauer, B. J.; Amis, E. J.; Tomalia, D. A.; Scherrenberg, R. J. Polym. Sci. Part B:Polym. Phys. 1997, 35, 2913.
[15] Rathgeber, S.; Monkenbusch, M.; Kreitschmann, M.; Urban, V.; Brulet, A. J. Chem. Phys. 2002, 117, 4047.
[16] Qin, T.; Zeng, Y.; Chen, J.; Yu, T.; Li, Y. Acta Chim. Sinica 2017, 75, 99. (秦天依, 曾毅, 陈金平, 于天君, 李嫕, 化学学报, 2017, 75, 99.)
[17] de Gennes, P. G.; Hervet, H. Journal de Physique Lettres 1983, 44, L351.
[18] Lescanec, R. L.; Muthukumar, M. Macromolecules 1990, 23, 2280.
[19] Mansfield, M. L.; Klushin, L. I. Macromolecules 1993, 26, 4262.
[20] Mansfield, M. L.; Jeong, M. Macromolecules 2002, 35, 9794.
[21] Chen, Z. Y.; Cui, S.-M. Macromolecules 1996, 29, 7943.
[22] Murat, M.; Grest, G. S. Macromolecules 1996, 29, 1278.
[23] Boris, D.; Rubinstein, M. Macromolecules 1996, 29, 7251.
[24] Lyulin, A. V.; Davies, G. R.; Adolf, D. B. Macromolecules 2000, 33, 6899.
[25] Sheng, Y.-J.; Jiang, S.; Tsao, H.-K. Macromolecules 2002, 35, 7865.
[26] Götze, I. O.; Likos, C. N. Macromolecules 2003, 36, 8189.
[27] Timoshenko, E. G.; Kuznetsov, Y. A.; Connolly, R. J. Chem. Phys. 2002, 117, 9050.
[28] Bosko, J. T.; Prakash, J. R. Macromolecules 2011, 44, 660.
[29] Cui, W.; Su, C.-F.; Merlitz, H.; Wu, C.-X.; Sommer, J.-U. Macromolecules 2014, 47, 3645.
[30] Klos, J. S.; Sommer, J.-U. Macromolecules 2013, 46, 3107.
[31] Lewis, T.; Pryamitsyn, V.; Ganesan, V. J. Chem. Phys. 2011, 135, 204902.
[32] Lu, Y.; An, L.; Wang, Z.-G. Macromolecules 2013, 46, 5731.
[33] Mandal, T.; Dasgupta, C.; Maiti, P. K. J. Chem. Phys. 2014, 141, 144901.
[34] Rubio, A. M.; McBride, C.; Freire, J. J. Macromolecules 2014, 47, 5379.
[35] Chen, C.; Tang, P.; Qiu, F.; Shi, A.-C. J. Phys. Chem. B 2016, 120, 5553.
[36] Chen, W.-R.; Porcar, L.; Liu, Y.; Butler, P. D.; Magid, L. J. Macromolecules 2007, 40, 5887.
[37] Giupponi, G.; Buzza, D. M. A. J. Chem. Phys. 2004, 120, 10290.
[38] Yang, Y. Z.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Macromolecules 2017, 50, 4007.
[39] Flory, P. J. Principles of Polymer Chemistry, Cornell University Press, New York, 1953.
[40] Matsen, M. W. J. Phys.:Condens. Matter 2002, 14, R21.
[41] Fredrickson, G. The Equilibrium Theory of Inhomogeneous Polymers, Oxford University Press, Oxford, 2006.
[42] Edwards, S. F. Proc. Phys. Soc. 1965, 85, 613.

文章导航

/