双面进光太阳能电池透明对电极研究进展
收稿日期: 2018-05-12
网络出版日期: 2018-06-29
基金资助
项目受国家自然科学基金(No.61774169)、中南大学创新驱动计划项目(No.2016CX022)、留学回国基金资助以及湖南省自然科学基金(No.2016JJ3140)、中南大学研究生创新项目(Nos.1053320170116,1053320170565)和中南大学本科生创新项目(Nos.cx20170271,201710533300)资助.
Research Progress of Bifacial Solar Cells with Transparent Counter Electrode
Received date: 2018-05-12
Online published: 2018-06-29
Supported by
Project supported by the National Natural Science Foundation of China (No. 61774169), Third Innovation Driven Project of Central South University (No. 2016CX022), Scientific Research Foundation for the Returned overseas Chinese Scholar, Natural Science Foundation of Hunan Province (No. 2016JJ3140), Graduate student of Central South University (Nos. 1053320170116, 1053320170565) and Undergraduate student of Central South University (Nos. cx20170271, 201710533300).
近年来,太阳能电池(包括染料敏化、量子点敏化及钙钛矿太阳能电池)因其成本低、质量轻、效率高受到研究人员的广泛关注.双面进光太阳能电池是太阳光能通过光阳极以及透明对电极同时入射的器件,是近年来扩宽太阳能电池光利用率及能效以达到提高器件光电性能的主要手段,其中透明对电极的性能直接影响器件的背面进光效率,因此研究对电极对提高双面进光太阳能电池光电转化效率十分必要.本文针对传统对电极透光性低,成本高,光利用率低等问题,与双面进光的高光电转换效率以及低成本等特点对比,综合分析了透明对电极材料的选择及界面修饰改性等对双面进光染料敏化、量子点敏化及钙钛矿太阳能电池光电性能的影响及其应用前景.
杨英 , 陈甜 , 潘德群 , 张政 , 郭学益 . 双面进光太阳能电池透明对电极研究进展[J]. 化学学报, 2018 , 76(9) : 681 -690 . DOI: 10.6023/A18050197
In recent years, solar cells (including dye-sensitized solar cells (DSSCs), quantum dots sensitized solar cells (QDSCs), and perovskite solar cells (PSCs)) have attracted wide attention due to their low cost, light weight, and high efficiency. Compared with traditional solar cells with opaque counter electrodes where the sunlight can only pass from the photoanode, bifacial solar cells, which are composed of photoanode, electrolyte, transparent counter electrode, hole transport layer can realize the purpose that sunlight can pass through the photoanode and the transparent counter electrode (CE) at the same time, which can reduce the loss of sunlight and greatly broad the light utilization of device to achieve improved opto-electronic performance. In the entire electrochemical cycle, the transparent counter electrode is regarded as reducing agent in reducing the oxidation state I3- in the electrolyte to the reduced state I- so the electrocatalytic activity, chemical stability, electrical conductivity of the transparent counter electrode directly influences the rear side photo-to-electricity efficiency of device and the preparation of transparent counter electrodes is significantly important for the device. Therefore, it is necessary to study the effect of the counter electrode on the photoelectric conversion efficiency of the bifacial solar cells. In view of the problems of low transmittance, high cost, and low light utilization of traditional CE, the transparent CE of bifacial solar cells with high power conversion efficiency and low cost are preferred. The transparent CE of bifacial DSSCs, QDSCs and PSCs are comprehensively discussed in this paper. The influence of materials choosing and interfacial modification methods of transparent counter electrode on the photovoltaic performances of bifacial devices are analyzed. The transparent counter electrodes materials mainly include metals and alloys, sulfides, selenides, conductive polymers, and so on. In conclusion, bifacial solar cells mainly have the following problems:high reflectivity of metal electrodes, corrosion of the sulfide on the electrodes and the stability of the conductive polymers. The further application prospects of these kinds of bifacial solar cells is proposed.
[1] Lu, Y.; Ding, Y. F.; Wang, J. Y.; Pei, J. Chin. J. Org. Chem. 2016, 36, 2272(in Chinese). (卢阳, 丁一凡, 王婕妤, 裴坚, 有机化学, 2016, 36, 2272.)
[2] Chen, H. J. Chin. J. Org. Chem. 2016, 36, 460(in Chinese). (陈华杰, 有机化学, 2016, 36, 460.)
[3] Kong, L. J.; Zhou, X. Y.; Fan, S. Y.; Li, Z. J.; Gu, Z. G. Acta Chim. Sinica 2016, 74, 620(in Chinese). (孔丽娟, 周晓燕, 范赛英, 李在均, 顾志国, 化学学报, 2016, 74, 620.)
[4] Gao, S. M.; Hu, Y. H.; Duan, Z. M.; Gao, X. K. Chin. J. Chem. 2016, 34, 689.
[5] Poudel, P.; Thapa, A.; Elbohy, H.; Qiao, Q. Nano Energy 2014, 5, 116.
[6] Ju, M. J.; Jeon, I. Y.; Lim, K.; Kim, J. C.; Choi, H. J.; Choi, I. T.; Yu, K. E.; Kwon, Y. J.; Ko, J.; Lee, J. J. Energy Environ. Sci. 2014, 7, 1044.
[7] Lee, C. P.; Lin, C. A.; Wei, T. C.; Tsai, M. L.; Meng, Y.; Li, C. T.; Ho, K. C.; Wu, C. I.; Lau, S. P.; He, J. H. Nano Energy 2015, 18, 109.
[8] Ito, S.; Zakeeruddin, S. M.; Comte, P.; Liska, P.; Kuang, D.; Graetzel, M. Nat. Photonics 2008, 2, 693.
[9] Park, C. Y.; Lee, J. H.; Choi, B. H. Org. Electron. 2013, 14, 3172.
[10] Shin, Y. H.; Kang, S. B.; Lee, S.; Kim, J. J.; Kim, H. K. Org. Electron. 2013, 14, 926.
[11] Won, J. Y.; Han, Y. H.; Seol, H. J.; Lee, K. J.; Choi, R.; Jeong, J. K. Thin Solid Films 2016, 603, 268.
[12] Yan, L. T.; Rath, J. K.; Schropp, R. E. I. Appl. Surf. Sci. 2011, 257, 9461.
[13] Morgenstern, F. S. F.; Kabra, D.; Massip, S.; Brenner, T. J. K.; Lyons, P. E.; Coleman, J.; Friend, R. H. Appl. Phys. Lett. 2011, 99, 242.
[14] De, S.; Higgins, T. M.; Lyons, P. E.; Doherty, E. M.; Nirmalraj, P. N.; Blau, W. J.; Boland, J. J.; Coleman, J. N. ACS Nano 2009, 3, 1767.
[15] Wu, Z. C.; Chen, Z. H.; Du, X.; Logan, J. M.; Sippel, J.; Nikolou, M.; Kamaras, K.; Reynolds, J. R.; Tanner, D. B.; Hebard, A. F.; Rinzler, A. G. Science 2004, 305, 1273.
[16] Rowell, M. W.; Topinka, M. A.; McGehee, M. D.; Prall, H. J.; Dennler, G.; Sariciftci, N. S.; Hu, L.-B.; Gruner, G. Appl. Phys. Lett. 2006, 88, 233506.
[17] Barnes, T. M.; Bergeson, J. D.; Tenent, R. C.; Larsen, B. A.; Teeter, G.; Jones, K. M.; Blackburn, J. L.; van de Lagemaat, J. Appl. Phys. Lett. 2010, 96, 243309.
[18] Na, S. I.; Kim, S. S.; Jo, J.; Kim, D. Y. Adv. Mater. 2008, 20, 4061.
[19] Ouyang, J.; Xu, Q. F.; Chu, C. W.; Yang, Y.; Li, G.; Shinar, J. Polymer 2004, 45, 8443.
[20] Zhu, H. Y.; Huang, W.; Huang, Y L.; Wang, W. Z. Acta Chim. Sinica 2016, 74, 429(in Chinese). (朱昊云, 黄威, 黄宇立, 汪伟志, 化学学报, 2016, 74, 429.)
[21] Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S. Nat. Nanotechnol. 2010, 5, 574.
[22] Bonaccorso, F.; Sun, Z.; Hasan, T.; Ferrari, A. C. Nat. Photonics 2010, 4, 611.
[23] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183.
[24] Chen, P. Y.; Li, C. T.; Lee, C. P.; Vittal, R.; Ho, K. C. Nano Energy 2015, 12, 374.
[25] Lee, Y. L.; Chen, C. L.; Chong, L. W.; Chen, C. H.; Liu, Y. F.; Chi, C. F. Electrochem. Commun. 2010, 12, 1662.
[26] Tai, Q.; Chen, B.; Guo, F.; Xu, S.; Hu, H.; Sebo, B.; Zhao, X.-Z. ACS Nano 2011, 5, 3795.
[27] Gao, J.; Yang, Y.; Zhang, Z.; Yan, J.; Lin, Z.-H.; Guo, X.-Y. Nano Energy 2016, 26, 123.
[28] Yang, Y.; Gao, J.; Zhang, Z.; Xiao, S.; Xie, H.-H.; Sun, Z.-B.; Wang, J. H.; Zhou, C. H.; Wang, Y. W.; Guo, X. Y.; Chen, P. K.; Yu, X. F. Adv. Mater. 2016, 28, 8937.
[29] Achari, M. B.; Elumalai, V.; Vlachopoulos, N.; Safdari, M.; Gao, J.; Gardner, J. M.; Kloo, L. PCCP 2013, 15, 17419.
[30] Wang, X.; Kulkarni, S. A.; Ito, B. I.; Batabyal, S. K.; Nonomura, K.; Wong, C. C.; Gratzel, M.; Mhaisalkar, S. G.; Uchida, S. ACS Appl. Mater. Interfaces 2013, 5, 444.
[31] O'Regan, B.; Gratzel, M. Nature 1991, 353, 737.
[32] Huang, J.-R.; Tan, X.; Yu, T.; Zhao, L.; Wu, T.-Y. Mater. Rev. 2011, 25, 134(in Chinese). (黄娟茹, 谭欣, 于涛, 赵林, 吴天彧, 材料导报, 2011, 25, 134.)
[33] Yang, Y.;Zhang, Z; Gao, J.; Lin, Z H; Yan, J Y; Guo, X Y. J. Inorg. Mater. 2017, 32, 25(in Chinese). (杨英, 张政, 高菁, 林泽华, 严靖园, 郭学益, 无机材料学报, 2017, 32, 25.)
[34] Li, J.; Sun, M. X.; Zhang, X. Y.; Cui, X. L. Acta Phys.-Chim. Sin. 2011, 27, 2255(in Chinese). (李靖, 孙明轩, 张晓艳, 崔晓莉, 物理化学学报, 2011, 27, 2255.)
[35] Lee, K. M.; Lin, L. C.; Chen, C. Y. Electrochim. Acta 2014, 135, 578.
[36] Zhang, H. H.; Tang, Q. W.; He, B. L. RSC Adv. 2015, 5, 51600.
[37] Cheng, C. E.; Lin, Z. K.; Lin, Y. C.; Lei, B. C.; Chang, C. S.; Chien, F. S.-S. Jpn. J. Appl. Phys. 2017, 56, 012301.
[38] Bahramian, A.; Vashaee, D. Sol. Energy Mater. Sol. Cells 2015, 143, 284.
[39] Wu, J. H.; Li, Y.; Tang, Q. W.; Yue, G. T.; Lin, J. M.; Huang, M. L.; Meng, L. J. Sci. Rep. 2014, 4, 4028.
[40] He, B. L.; Zhang, X.; Zhang, H. N.; Li, J. Y.; Meng, Q.; Tang, Q. W. Sol. Energy. 2017, 147, 470.
[41] Rong, Y. G.; Ku, Z. L.; Li, X.; Han, H. W. J. Mater. Sci. 2015, 50, 3803.
[42] Li, H. G.; Xiao, Y. M.; Han, G. Y. J. Power Sources 2017, 342, 709.
[43] Xu, S. J.; Luo, Y. F.; Liu, G. W.; Qiao, G. J.; Zhong, W.; Xiao, Z. H.; Luo, Y. P.; Ou, H. Electrochim. Acta 2015, 156, 20.
[44] Song, D. D.; Li, M. C.; Li, Y. F.; Zhao, X.; Jiang, B.; Jiang, Y. J. ACS Appl. Mater. Interfaces 2014, 6, 7126.
[45] Han, J.; Kim, H.; Kim, D. Y.; Jo, S. M.; Jang, S.-Y. ACS Nano 2010, 4, 3503.
[46] Roy-Mayhew, J. D.; Bozym, D. J.; Punckt, C.; Aksay, I. A. ACS Nano 2010, 4, 6203.
[47] Duan, Y. Y.; Tang, Q. W.; Liu, J.; He, B. L.; Yu, L. M. Angew. Chem.-Int. Ed. 2014, 53, 14569.
[48] Duan, Y. Y.; Tang, Q. W.; He, B. L.; Li, R.; Yu, L. M. Nanoscale 2014, 6, 12601.
[49] Liu, J.; Tang, Q. W.; He, B. L.; Yu, M. L. J. Power Sources 2015, 282, 79.
[50] Yang, P. Z.; Zhao, Z. Y.; Zhu, L.; Tang, Q. W. J. Alloys Compd. 2015, 648, 930.
[51] Murakami, T. N.; Kay, A.; Ito, S.; Wang, Q.; Nazeeruddin, M. K.; Bessho, T.; Liska, P.; Baker, R. H.; Comte, P.; Pechy, P. J. Electrochem. Soc. 2006, 153, A2255.
[52] Chen, J. K.; Li, K. X; Luo, Y. H.; Guo, X. Z.; Li, D. M.; Deng, M. H.; Huang, S. Q.; Meng, Q. B. Carbon 2009, 47, 2704.
[53] Meng, X. L.; Li, H. Y.; Wang, J. S. Chem. J. Chin. Univ. 2012, 33, 1021(in Chinese). (孟祥龙, 李洪义, 王金淑, 高等学校化学学报, 2012, 33, 1021.)
[54] Ma, C.; Dong, W.; Fang, L.; Zheng, F. G.; Shen, M. R.; Wang, Z. L. Thin Solid Films 2012, 520, 5727.
[55] Lan, Z.; Wu, J. H.; Lin, J. M.; Huang, M. L.; Wang, X. X. Thin Solid Films 2012, 522, 425.
[56] Li, X.; Gan, W.-P.; Zhang, W.-C.; Li, L.-L.; Huang, X.-Q. Acta, Materiae Compositae Sinica 2012, 29, 1(in Chinese). (李祥, 甘卫平, 张文超, 李璐璐, 黄小清, 复合材料学报, 2012, 29, 1.)
[57] Zhang, K.-Q.; Zhang, X.-L. New Chem. Mater. 2010, 38, 27(in Chinese). (张可青, 张新荔, 化工新型材料, 2010, 38, 27.)
[58] Guo, X. Y.; Gao, J.; Zhang, Z.; Xiao, S.; Pan, D. Q.; Zhou, C.; Shen, J.; Hong, J.; Yang, Y. Mater. Today Energy 2017, 5, 320.
[59] Ross, R. T.; Nozik, A. J. J. Appl. Phys. 1982, 53, 3813.
[60] Karki, I. B.; Nakarmi, J. J.; Mandal, P. K.; Chatterjee, S. Nepal J. Sci. Tech. 2013, 13, 179.
[61] Kushwaha, S.; Bahadur, L. J. Lumin. 2015, 161, 426.
[62] Gorer, S.; Hodes, G. J. Phys. Chem. 1994, 98, 5338.
[63] Jiao, S.; Du, J.; Du, Z. L.; Long, D. H.; Jiang, W. Y.; Pan, Z. X.; Li, Y.; Zhong, X. H. J. Phys. Chem. Lett. 2017, 8, 559.
[64] Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.-I.; Hanaya, M. Chem. Commun. 2015, 51, 15894.
[65] Dao, V.-D.; Choi, Y.; Yong, K.; Larina, L. L.; Shevaleevskiy, O.; Choi, H. S. J. Power Sources 2015, 274, 831.
[66] Seol, M.; Kim, H.; Tak, Y.; Yong, K. Chem. Commun. 2010, 46, 5521.
[67] Ma, C. Q.; Tang, Q. W.; Zhao, Z. Y.; Hou, M. J.; Chen, Y. R.; He, B. L.; Yu, L. M. J. Power Sources 2015, 278, 183.
[68] Liu, L. L.; Wang, Q.; Gao, C. J.; Chen, H.; Liu, W. S.; Tang, Y. J. Phys. Chem. C 2014, 118, 14511.
[69] Tu, Y. G.; Wu, J. H.; Lan, Z.; Lin, Y. B.; Liu, Q.; Lin, B. C.; Liu, G. Z. J. Mater. Sci.-Mater. Electron. 2014, 25, 3016.
[70] Ke, W. J.; Fang, G. J.; Lei, H. W.; Qin, P. L.; Tao, H.; Zeng, W.; Wang, J.; Zhao, X. Z. J. Power Sources 2014, 248, 809.
[71] De Rossi, F.; Di Gaspare, L.; Reale, A.; Di Carlo, A.; Brown, T. M. J. Mater. Chem. A 2013, 1, 12941.
[72] Geng, H. F.; Zhu, L. Q.; Li, W. P.; Liu, H. C.; Su, X. W.; Xi, F. X.; Chang, X. W. Electrochim. Acta 2015, 182, 1093.
[73] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.
[74] Jiang, Q.; Chu, Z. N.; Wang, P. Y.; Yang, X. L.; Liu, H.; Wang, Y.; Yin, Z. G.; Wu, J. L.; Zhang, X. W.; You, J. B. Adv. Mater. 2017, 29, 1703852.
[75] Bush, K. A.; Palmstrom, A. F.; Yu, Z. J.; Boccard, M.; Cheacharoen, R.; Mailoa, J. P.; McMeekin, D. P.; Hoye, R. L. Z.; Bailie, C. D.; Leijtens, T.; Peters, I. M.; Minichetti, M. C.; Rolston, N.; Prasanna, R.; Sofia, S.; Harwood, D.; Ma, W.; Moghadam, F.; Snaith, H. J.; Buonassisi, T.; Holman, Z. C.; Bent, S. F.; McGehee, M. D. Nat. Energy 2017, 2, 17009.
[76] Yang, W. S.; Park, B.-W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H.; Seok, S. I. Science 2017, 356, 1376.
[77] Yang, Y.; Gao, J.; Cui, J. R.; Guo, X. Y. J. Inorg. Mater. 2015, 30, 1131(in Chinese). (杨英, 高菁, 崔嘉瑞, 郭学益, 无机材料学报, 2015, 30, 1131.)
[78] Zhu, S. J.; Yao, X.; Ren, Q. S.; Zheng, C. C.; Li, S. Z.; Tong, Y. Z.; Shi, B.; Guo, S.; Fan, L.; Ren, H. Z.; Wei, C. C.; Li, B. Z.; Ding, Y.; Huang, Q.; Li, Y. L.; Zhao, Y.; Zhang, X. D. Nano Energy 2017, 45, 280.
[79] Fan, L.; Li, Y. L.; Yao, X.; Ding, Y.; Zhao, S. Z.; Shi, B.; Wei, C. C.; Zhang, D. K.; Li, B. Z.; Wang, G. C.; Zhao, Y.; Zhang, X. D. ACS Appl. Energy Mater. 2018, 1, 1575.
[80] Kim, G. M.; Tatsuma, T. Sci. Rep. 2017, 7, 10699.
[81] Guo, F.; Azimi, H.; Hou, Y.; Przybilla, T.; Hu, M. Y.; Bronnbauer, C.; Langner, S.; Spiecker, E.; Forberich, K.; Brabec, C. J. Nanoscale 2015, 7, 1642.
[82] Lee, M.; Ko, Y.; Jun, Y. J. Mater. Chem. A 2015, 3, 19310.
[83] Yang, K.Y.; Li, F. S.; Zhang, J. H.; Veeramalai, C. P.; Guo, T. L. Nanotechnology 2016, 27, 095202.
[84] Pang, S. Z.; Chen, D. Z.; Zhang, C. F.; Chang, J. J.; Lin, Z. H.; Yang, H. F.; Sun, X.; Mo, J. J.; Xi, H.; Han, G. Q.; Zhang, J. C.; Han, Y. Sol. Energy Mater. Sol. Cells 2017, 170, 278.
[85] Fan, X.; Wang, J. Z.; Wang, H. B.; Liu, X.; Wang, H. ACS Appl. Mater. Interfaces 2015, 7, 16287.
[86] Kim, N.; Kee, S.; Lee, S. H.; Lee, B. H.; Kahng, Y. H.; Jo, Y.-R.; Kim, B.-J.; Lee, K. Adv. Mater. 2014, 26, 2268.
[87] Xiao, Y. M.; Han, G. Y.; Wu, J. H.; Lin, J.-Y. J. Power Sources 2016, 306, 171.
[88] Xiao, Y. M.; Han, G. Y.; Zhou, H. H.; Wu, J. H. RSC Adv. 2016, 6, 2778.
[89] Sun, K.; Li, P. C.; Xia, Y. J.; Chang, J. J.; Ouyang, J. Y. ACS Appl. Mater. Interfaces 2015, 7, 15314.
[90] Liu, Z. K.; You, P.; Xie, C.; Tang, G. Q.; Yan, F. Nano Energy 2016, 28, 151.
/
〈 |
|
〉 |