研究论文

超小金纳米簇用于荧光及CT双模态成像的研究

  • 张燕燕 ,
  • 武明豪 ,
  • 武明杰 ,
  • 国林沛 ,
  • 曹琳 ,
  • 吴虹仪 ,
  • 张雪宁
展开
  • a 天津医科大学第二医院 医学影像科 天津 300211;
    b 加拿大国家科学研究院 能源材料研究所 加拿大 J3X1S2;
    c 天津医科大学第二医院 泌尿外科研究所 天津 300211

收稿日期: 2018-06-05

  网络出版日期: 2018-07-23

基金资助

项目受天津市卫纪委攻关项目(No.16KG115)和天津医科大学"十三五"综合投资学科建设项目(No.116015012017XK0202)资助.

Study of Fluorescence and CT Bimodal Imaging of Ultrasmall Gold Nanoclusters

  • Zhang Yanyan ,
  • Wu Minghao ,
  • Wu Mingjie ,
  • Guo Linpei ,
  • Cao Lin ,
  • Wu Hongyi ,
  • Zhang Xuening
Expand
  • a Department of Medical Imaging, Second Hospital of Tianjin Medical University, Tianjin 300211;
    b National Institute of Scientific Research-Energy Materials and Telecommunications, Canada J3X1S2;
    c Institute of Urology, Second Hospital of Tianjin Medical University, Tianjin 300211

Received date: 2018-06-05

  Online published: 2018-07-23

Supported by

Project supported by the Program of the Tianjin Health and Family Planning Commission (No. 16KG115) and the Tianjin Medical University "13th Five-Year" Comprehensive Investment Subject Construction Project (No. 116015012017XK0202).

摘要

基于金纳米簇强烈的量子限制效应(strong quantum confinement effect,SQCE),采用一步合成法,制备了同时具有高效近红外荧光与CT双模态成像能力的超小金纳米簇.实验表明,通过优化合成比例以及合成条件,所合成的超小金纳米簇具有很大的斯托克斯(Stokes)位移、较高的荧光强度和X射线吸收效率.除此之外,该超小金纳米簇具有良好的单分散性、稳定性和生物相容性.4T1肿瘤细胞荧光成像实验结果表明,该纳米粒子可被肿瘤细胞快速、高效地摄取.

本文引用格式

张燕燕 , 武明豪 , 武明杰 , 国林沛 , 曹琳 , 吴虹仪 , 张雪宁 . 超小金纳米簇用于荧光及CT双模态成像的研究[J]. 化学学报, 2018 , 76(9) : 709 -714 . DOI: 10.6023/A18060225

Abstract

Multimodality imaging can integrate structural/functional information from different imaging tools, thus provide more accurate diagnosis than each single imaging modality. Au nanoclusters (AuNCs) are unique and have rich X-ray attenuation and fluorescent properties based on strong quantum confinement effect (SQCE); however, there is a huge challenge to simultaneously improve both X-ray imaging ability and fluorescent properties by adjusting sizes under the requirements of in vivo biological application. In this study, using rGSH as reductant and stabilizer, we developed a sub-nanometer ultrasmall AuNCs (Us-Au15NCs) as an optimized multimodal imaging probe with enhanced imaging ability by accurately adjusting pH to 8. For the first time, the in vitro both enhanced fluorescent and X-ray computed tomography (CT) bimodal imaging ability of AuNCs were investigated. By adjusting the pH and the proportion of Au3+ ions to GSH, the fluorescence intensity of the Us-AuNCs was strengthened and the emission peak showed red-shifts from 510 nm to 683 nm. While promising and exciting, the attenuation coefficient verified by the HU (hounsfield unit) values was increased almost linearly with the ratio increasing, which preserved the excellent X-ray imaging ability of Us-AuNCs. In addition, With a demonstrated better X-ray attenuation property than that of clinically used iodinated small molecular contrast agent (e.g., Iohexol), the developed Us-Au15NCs enabled efficient and enhanced CT imaging. Thus, the synthesized Us-Au15NCs characterised by UV-vis spectra and fluorescence spectra could simultaneously possess superior CT contrast ability and significant photoluminescence properties. Transmission electron microscopy (TEM) results revealed that the morphology was uniform spherical shape. Moreover, the Us-Au15NCs shows excellent stability, low cytotoxicity and good biocompatibility. Furthermore, the prepared Us-Au15NCs was confirmed to be effective and applicable for fluorescent imaging of 4T1 tumor cells, which determining that the Us-Au15NCs was more effectively involved with the cancer cells. The significance of this study is that rather than the synthesis of Us-AuNCs only, the prepared Us-Au15NCs may serve as multimodality imaging contrast agent with fluorescence and CT imaging for clinical diagnosis application.

参考文献

[1] Yang, Y.; Wang, S.; Xu, C.; Xie, A.; Shen, Y.; Zhu, M. Chem. Commun. 2018, 54, 2731.
[2] Zeng, Y.; Zhang, D.; Wu, M.; Liu, Y.; Zhan, X.; Li, L.; Li, Z.; Han, X.; Wei, X.; Liu, X. ACS Appl. Mater. Inter. 2014, 6, 14266.
[3] Mei, X.; Wang, W.; Yan, L.; Hu, T.; Liang, R.; Yan, D.; Wei, M.; Evans, D. G.; Duan, X. Biomaterials 2018, 165, 14.
[4] Gao, D.; Sheng, Z.; Liu, Y.; Hu, D.; Zhang, J.; Zhang, X.; Zheng, H.; Yuan, Z. Adv. Healthc. Mater. 2017, 6, 1601094.
[5] Hekman, M. C. H.; Rijpkema, M.; Bos, D. L.; Oosterwijk, E.; Goldenberg, D. M.; Mulders, P. F. A.; Boerman, O. C. J. Nucl. Med. 2017, 58, 706.
[6] Cui, H.; Wang, R.; Zhou, Y.; Shu, C.; Song, F.; Zhong, W. Luminescence 2016, 31, 813.
[7] Lee, H. J.; Im, D. J.; Youn, J. C.; Chang, S.; Suh, Y. J.; Hong, Y. J.; Kim, Y. J.; Hur, J.; Choi, B. W. Radiology 2016, 280, 49.
[8] Zhang, J.; Li, C.; Zhang, X.; Huo, S.; Jin, S.; An, F.-F.; Wang, X.; Xue, X.; Okeke, C. I.; Duan, G.; Guo, F.; Zhang, X.; Hao, J.; Wang, P. C.; Zhang, J. c.; Liang, X. J. Biomaterials 2015, 42, 103.
[9] Yang, Y.; Zhang, L.; Cai, J.; Li, X.; Cheng, D.; Su, H.; Zhang, J.; Liu, S.; Shi, H.; Zhan, Y.; Zhang, C. ACS Appl. Mater. Inter. 2016, 8, 1718.
[10] Huang, X.; Zhang, F.; Lee, S.; Swierczewska, M.; Kiesewetter, D. O.; Lang, L.; Zhang, G.; Zhu, L.; Gao, H.; Choi, H. S.; Niu, G.; Chena, X. Biomaterials 2012, 33, 4370.
[11] Rammohan, A.; Mishra, G.; Mahaling, B.; Tayal, L.; Mukhopadhyay, A.; Gambhi, S.; Sharma, A.; Sivakumar, S. ACS Appl. Mater. Inter. 2016, 8, 350.
[12] Xie, J.; Zheng, Y.; Ying, J. Y. J. Am. Chem. Soc. 2009, 131, 888-889.
[13] Maity, P.; Xie, S.; Yamauchi, M.; Tsukuda, T. Nanoscale 2012, 4, 4027.
[14] Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Stephens, P. W.; Cleveland, C. L.; Luedtke, W. D.; Landman, U. Adv. Mater. 1996, 8, 428.
[15] Bartlett, P. A.; Bauer, B.; Singer, S. J. J. Am. Chem. Soc. 1978, 100, 5085.
[16] Zhou, Y.; Li, G. Acta Phys.-Chem. Sin. 2017, 33, 1297. (周洋, 李杲, 物理化学学报, 2017, 33, 1297.)
[17] Lin, C.; Gong, H.; Fan, L.; Li, X. Acta Chim. Sinica 2014, 72, 704. (蔺超, 宫贺, 范楼珍, 李晓宏, 化学学报, 2014, 72, 704.)
[18] Liu, Q.; Wang, X.; Ren, Y.; Yang, X.; Wu, Z.; Liu, X.; Li, L.; Miao, S.; Su, Y.; Li, Y.; Liang, C.; Huang, Y. Chin. J. Chem. 2018, 36, 329.
[19] Li, M.; Tian, S.; Wu, Z. Chin. J. Chem. 2017, 35, 567.
[20] Zhang, L.; Wang, E. Nano Today 2014, 9, 132.
[21] Kong, Y.; Fan, A. J. Anal. Sci. 2018, 34, 47. (孔亚访, 樊爱萍, 分析科学学报, 2018, 34, 47.)
[22] Peng, T.; Wang, J.; Xie, S.; Yao, K.; Sun, S.; Zeng, Y.; Jiang, H. Chin. J. Anal. Chem. 2018, 46, 373. (彭涛, 王见一, 谢三磊, 姚凯, 孙淑娟, 曾于洋, 江海洋, 分析化学, 2018, 46, 373.)
[23] Lin, R.; Chen, Y.; Tao, G.; Pei, X.; Liu, F.; Li, N. Acta Chim. Sinica 2017, 75, 1103. (林若韵, 陈阳, 陶广宇, 裴晓静, 刘锋, 李娜, 化学学报, 2017, 75, 1103.)
[24] Gao, G.; Gong, D.; Zhang, M.; Sun, T. Acta Chim. Sinica 2016, 74, 363. (高冠斌, 龚德君, 张明曦, 孙涛垒, 化学学报, 2016, 74, 363.)
[25] Polavarapu, L.; Manna, M.; Xu, Q. Nanoscale 2011, 3, 429.
[26] Tian, R.; Yan, D.; Li, C.; Xu, S.; Liang, R.; Guo, L.; Wei, M.; Evans, D. G.; Duan, X. Nanoscale 2016, 8, 9815.
[27] Song, J.; Yang, X.; Zhang, X.; Yan, D.; Wang, Z.; Zhao, Y. ACS Appl. Mater. Inter. 2015, 7, 17287.
[28] Stamplecoskie, K. G.; Kamat, P. V. J. Am. Chem. Soc. 2014, 136, 11093.
[29] Yoon, B.; Koskinen, P.; Huber, B.; Kostko, O.; Issendorff, B. V.; Hakkinen, H.; Moseler, M.; Landman, U. ChemPhysChem 2007, 8, 157.
[30] Zheng, J.; Nicovich, P. R.; Dickson, R. M. Annu. Rev. Phys. Chem. 2007, 58, 409.
[31] Zheng, J.; Zhang, C.; Dickson, R. M. Phys. Rev. Lett. 2004, 93, 077402.
[32] Shang, L.; Nienhaus, G. U. Biophys. Rev. 2012, 4, 313.
[33] Zhou, Y.; Li, Z.; Zheng, K.; Li, G. Acta Phys.-Chim. Sin. 2018, 34, 786.
[34] Lu, Y.; Chen, W. Chem. Soc. Rev. 2012, 41, 3594.
[35] Boronat, M.; Leyvapérez, A.; Corma, A. Acc. Chem. Res. 2014, 45, 834.
[36] Roy, S.; Baral, A.; Bhattacharjee, R.; Jana, B.; Datta, A.; Ghosh, S.; Banerjee, A. Nanoscale 2015, 7, 1912.
[37] Ma, Z.; Wang, P.; Pei, Y. Nanoscale 2016, 8, 17044.
[38] Cai, H.; Li, K.; Li, J.; Wen, S.; Chen, Q.; Shen, M.; Zheng, L.; Zhang, G.; Shi, X. Small 2015, 11, 4584.
[39] Wu, M.; Zhang, Y.; Zhang, Y.; Wu, M.; Wu, M.; Wu, H.; Cao, L.; Li, L.; Li, X.; Zhang, X. RSC Adv. 2018, 8, 1706.
[40] Feng, W.; Zhou, X.; Nie, W.; Chen, L.; Qiu, K.; Zhang, Y.; He, C. ACS Appl. Mater. Inter. 20157,4354.
[41] Orza, A.; Yang, Y.; Feng, T.; Wang, X.; Wu, H.; Li, Y.; Yang, L.; Tang, X.; Mao, H. J. Med. Phys. 2016, 43, 589.
[42] Zhao, H. Y.; Liu, S.; He, J.; Pan, C. C.; Li, H.; Zhou, Z. Y.; Ding, Y.; Huo, D.; Hu, Y. Biomaterials 2015, 51, 194.
[43] Zhu, H.; Wang, Y.; Chen, C.; Ma, M.; Zeng, J.; Li, S.; Xia, Y.; Gao, M. ACS Nano 2017, 11, 8273.
[44] Luo, Z.; Yuan, X.; Yu, Y.; Zhang, Q.; Leong, D. T.; Lee, J. Y.; Xie, J. J. Am. Chem. Soc. 2012, 134, 16662.
[45] Yu, Y.; Chen, X.; Yao, Q.; Yu, Y.; Yan, N.; Xie, J. Chem. Mater. 2013, 25, 946.
[46] Zhang, X. D.; Wu, D.; Shen, X.; Chen, J.; Sun, Y. M.; Liu, P. X.; Liang, X. J. Biomaterials 2012, 33, 6408.
[47] Dou, Y.; Guo, Y.; Li, X.; Li, X.; Wang, S.; Wang, L.; Lv, G.; Zhang, X.; Wang, H.; Gong, X.; Chang, J. ACS Nano 2016, 10, 2536.
[48] Zheng, J.; Zhang, C.; Dickson, R. M. Phys. Rev. Lett. 2004, 93, 077402.
[49] Chattoraj, S.; Amin, M. A.; Mohapatra, S.; Ghosh, S.; Bhattacharyya, K. ChemPhysChem 2016, 17, 61.
[50] Shibu, E. S.; Radha, B.; Verma, P. K.; Bhyrappa, P.; Kulkarni, G. U.; Pal, S. K.; Pradeep, T. ACS Appl. Mater. Inter. 2009, 1, 2199.
[51] Xia, Y.; Wu, X.; Zhao, J.; Zhao, J.; Li, Z.; Ren, W.; Tian, Y.; Li, A.; Shen, Z.; Wu, A. Nanoscale 2016, 8, 18682.
[52] George, A.; Shibu, E. S.; Maliyekkal, S. M.; Bootharaju, M. S.; Pradeep, T. ACS Appl. Mater. Inter. 2012, 4, 639.

文章导航

/