研究通讯

铟(I)/手性磷酸催化简单烯烃与β,γ-不饱和α-酮酸酯的不对称[4+2]环加成反应

展开
  • 中国科学院化学研究所 分子识别与功能院重点实验室 北京 100190

收稿日期: 2018-06-08

  网络出版日期: 2018-07-26

基金资助

项目受国家自然科学基金(Nos.21390400,21521002,21472193)和中国科学院项目(No.QYZDJ-SSW-SLU023)资助.

Enantioselective Indium(I)/Chiral Phosphoric Acid-catalyzed[4+2] Cycloaddition of Simple Olefin and β,γ-Unsaturated α-Keto Esters

Expand
  • Key Laboratory of Molecular Recognition and Functions, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190

Received date: 2018-06-08

  Online published: 2018-07-26

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21390400, 21521002, 21472193) and the Chinese Academy of Sciences (No. QYZDJ-SSW-SLU023).

摘要

报道了In(I)Cl/手性磷酸1a双酸体系催化的简单烯烃和βγ-不饱和α-酮酸酯的不对称[4+2]环加成反应,可高产率、高选择性(最高99:1dr,99%ee)生成相应的exo-[4+2]环加成产物.InCl和磷酸的协同作用是反应成功的关键,单独使用InCl和磷酸都不能催化反应进行.

本文引用格式

李速家, 吕健, 罗三中 . 铟(I)/手性磷酸催化简单烯烃与β,γ-不饱和α-酮酸酯的不对称[4+2]环加成反应[J]. 化学学报, 2018 , 76(11) : 869 -873 . DOI: 10.6023/A18060227

Abstract

Compared with indium(Ⅲ), indium(I) has both vacant p-orbitals and an electron lone pair, showing distinctive catalytic behaviors. However, chiral indium(I) catalysis has been rarely reported. Previously, we have developed asymmetric binary acid catalysis with indium(Ⅲ) and chiral phosphoric acid for a number of enantioselective transformations. Asymmetric binary-acid catalysis in[4+2] cycloaddition of β,γ-unsaturated α-keto esters with different olefins have been reported by our groups over the past five years. In 2013, we developed exo-selective and enantioselective[4+2] cycloaddition of simple industrial feedstock olefins, such as propene and isobutene, styrene and so on, catalyzed by In(BArF)3/1a. However, the reaction with electron-rich olefins, such as 4-methoxylstyrene did not work very well by indium(Ⅲ) catalysis due to uncontrolled polymerization side pathway. Very recently, we developed a new binary acid system InCl/1a, which could catalyze enantioselective[4+2] annulation of β,γ-unsaturated α-keto esters with much more electron-rich alkoxyallenes. In this study, we reported that the binary acid InCl and 1a was an effective and exo-selective catalyst for the[4+2] cycloaddition of simple olefins. In the presence of InCl (10 mol%) and chiral phosphoric acid 1a (10 mol%), the reaction occurred smoothly to afford the desired cycloadducts in moderate to good yields (20%~93%), with excellent diastereoselectivity (>95:5, exo/endo) and enantioselectivity (up to 99% ee) under the room temperature in CHCl3. Different olefins, such as styrenes 2, ring-strained norbornene 5a, norbornadiene 5b, and cyclopentadiene dimer 5c all worked well with excellent stereoselectivity under the optimal reaction conditions. More importantly, when 4-methoxylstyrene is used, the reaction can proceeded smoothly to afford[4+2] adduct 4k in 70% yield and good stereoselectivity (>95:5 dr, and 88% ee). The typical procedure for asymmetric[4+2] cycloaddition is as follows:To a dry reaction tube was added chiral phosphoric acid 1a (0.005 mmol, 5 mol%), InCl (0.005 mmol, 5 mol%), 4 Å MS (10 mg), 3 (0.1 mmol), then CHCl3 (0.5 mL) and 2 or 5 (0.5 mmol) was added to the mixture. The mixture was stirred for 24 h at room temperature. The mixture was purified by column chromatography to give the desired cycloaddition products 4 or 6.

参考文献

[1] (a) Gewali, M. B.; Tezuka, Y.; Banskota, A. H.; Ali, M. S.; Saiki, I.; Dong, H.; Kadota, S. Org. Lett. 1999, 1, 1733.
(b) Tezuka, Y.; Gewali, M. B.; Ali, M. S.; Banskota, A. H.; Kadota, S. J. Nat. Prod. 2001, 64, 208.
(c) Whiting, D. A. Nat. Prod. Rep. 1987, 4, 499.
[2] (a) Fehr, C.; Galindo, J.; Ohloff, G. Helv. Chim. Acta 1981, 64, 1247.
(b) Sera, A.; Ohara, M.; Yamada, H.; Egashira, E.; Ueda, N.; Setsune, J.-I. Chem. Lett. 1990, 19, 2043.
(c) Dujardin, G.; Maudet, M.; Brown, E. Tetrahedron Lett. 1994, 35, 8619.
(d) Leconte, S.; Dujardin, G.; Brown, E. Eur. J. Org. Chem. 2000, 639.
(e) Maingot, L.; Leconte, S.; Chataigner, I.; Martel, A.; Dujardin, G. Org. Lett. 2009, 11, 1619.
(f) Brown, E.; Dujardin, G.; Maudet, M. Tetrahedron 1997, 53, 9679.
[3] (a) Lv, J.; Zhang, L.; Luo, S.; Cheng, J.-P. Angew. Chem., Int. Ed. 2013, 52, 9786;
(b) Matumura, Y.; Suzuki, T.; Sakakura, A.; Ishihara, K. Angew. Chem., Int. Ed. 2014, 53, 6131.
[4] (a) Lv, J.; Zhang, L.; Zhou, Y.; Nie, Z.; Luo, S.; Cheng, J.-P. Angew. Chem., Int. Ed. 2011, 50, 6610.
(b) Lv, J.; Zhang, L.; Hu, S.; Cheng, J.-P.; Luo, S. Chem. Eur. J. 2012, 18, 799.
(c) Lü, J.; Zhong, X. R.; Cheng, J. P.; Luo, S. Z. Acta Chim. Sinica 2012, 70, 1518(in Chinese). (吕健, 钟兴仁, 程津培, 罗三中, 化学学报, 2012, 70, 1518).
(d) Lü, J.; Qin, Y.; Cheng, J. P.; Luo, S. Z. Acta Chim. Sinica 2014, 72, 809(in Chinese). (吕健, 秦岩, 程津培, 罗三中, 化学学报, 2014, 72, 809.)
(e) Zhong, X.; Lü, J.; Luo, S. Org. Lett. 2017, 19, 3331.
[5] Reviews on chiral phosphoric acids:(a) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999.
(b) Akiyama, T. Chem. Rev. 2007, 107, 5744.
(c) Terada, M. Synthesis 2010, 1929.
(d) Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156.
(e) Rueping, M.; Kuenkel, A.; Atodiresei, L. Chem. Soc. Rev. 2011, 40, 4539.
(f) Su, Y.; Shi, F. Chin. J. Org. Chem. 2010, 30, 486(in Chinese). (苏亚军, 史福强, 有机化学, 2010, 30, 486).
(g) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047.
(h) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2017, 117, 10608.
[6] For reviews on chiral phosphoric acid and metal combined catalysis, see:(a) Rueping, M.; Koenigs, R. M.; Atodiresei, I. Chem. Eur. J. 2010, 16, 9350.
(b) Phipps, R. J.; Hamilton, G..; Toste, F. D. Nat. Chem. 2012, 4, 603.
(c) Mahlau, M.; List, B. Angew. Chem., Int. Ed. 2013, 52, 518.
(d) Brak, K.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2013, 52, 534.
(e) Wu, X.; Li, M.; Gong, L.-Z. Acta Chim. Sinica 2013, 71, 1091(in Chinese). (吴祥, 李明丽, 龚流柱, 化学学报, 2013, 71, 1091).
(f) Yamashita, Y.; Tsubogo, T.; Kobayashi, S. Chem. Sci. 2012, 3, 967.
(g) Lv, J.; Luo, S. Chem. Commun. 2013, 49, 847.
(h) Chen, D.-F.; Han, Z.-Y.; Zhou, X.-L.; Gong, L.-Z. Acc. Chem. Res. 2014, 47, 2365.
[7] For reviews on indium (Ⅲ) as a Lewis acid, see (a) Ranu, B. C.; Eur. J. Org. Chem. 2000, 2347.
(b) Ghosh, R. Maiti, S. J. Mol. Catal. A:Chem. 2007, 264, 1.
(c) Osten, K. M.; Mehrkhodavandi, P. Acc. Chem. Res. 2017, 50, 2861.
[8] For recent selected examples of chiral indium(Ⅲ) Lewis acid-catalysis, see:(a) Zhao, J.-F.; Tsui, H.-Y.; Wu, P.-J.; Lu, J.; Loh, T.-P. J. Am. Chem. Soc. 2008, 130, 16492.
(b) Yu, Z.; Liu, X.; Dong, Z.; Xie, M.; Feng, X. Angew. Chem. Int. Ed. 2008, 47, 1308.
(c) Lin, L.; Kuang, Y.; Liu, X.; Feng, X. Org. Lett. 2011, 13, 3868.
(d) Zhao, J.-F.; Tan, B.-H.; Loh, T.-P. Chem. Sci. 2011, 2, 349.
(e) Zhao, B. Loh, T.-P. Org. Lett. 2013, 15, 2914.
(f) Praveen, C.; Montaignac, B.; Vitale, M. R.; Ratovelomanana-Vidal, V.; Michelet, V. ChemCatChem 2013, 5, 2395.
(g) Zhang, X.; Wang, M.; Ding, R.; Xu, Y.-H.; Loh, T.-P. Org. Lett. 2015, 17, 2736.
(h) Wang, L.; Lv, J.; Zhang, L.; Luo, S. Angew. Chem., Int. Ed. 2017, 56, 10867.
[9] (a) Schneider, U.; Kobayashi, S. Acc. Chem. Res. 2012, 45, 1331.
(b) Tuck, D. G. Chem. Soc. Rev. 1993, 22, 269.
(c) Andrews, C. G. Macdonald, C. L. B. Angew. Chem., Int. Ed. 2005, 44, 7453.
(d) Cooper, B. F. T.; Andrews, C. G.; Macdonald, C. L. B. J. Organmet. Chem. 2007, 692, 2843.
(e) Allan, C. J.; Cooper, B. F. T.; Cowley, H. J.; Rawson, J. M.; Macdonald, C. L. B. Chem. Eur. J. 2013, 19, 14470.
[10] (a) Chakrabarti, A.; Konishi, H.; Yamaguchi, M.; Schneider, U.; Kobayashi, S. Angew. Chem., Int. Ed. 2010, 49, 1838.
(b) Huang, Y.-Y.; Chakrabarti, A.; Morita, N.; Schneider, U.; Kobayashi, S. Angew. Chem., Int. Ed. 2011, 50, 11121.
(c) Li, S.; Lv, J.; Luo, S. Org. Chem. Front. 2018, 5, 1787.

文章导航

/