综述

离子液体-无机颗粒杂化电解质在二次电池中的研究进展

  • 邱华玉 ,
  • 赵井文 ,
  • 周新红 ,
  • 崔光磊
展开
  • a 青岛科技大学化学与分子工程学院 青岛 266042;
    b 中国科学院青岛生物能源与过程研究所 青岛市储能产业技术研究院 青岛 266101
邱华玉,青岛科技大学化学与分子工程学院和中国科学院青岛生物能源与过程研究所联合培养硕士生.主要从事二次电池有机-无机杂化电解质及低成本电池体系研究;赵井文,副研究员,2015年于北京化工大学获得化学博士学位,2014年赴牛津大学进行博士生联合培养学习,2015年7月起于中国科学院青岛生物能源与过程研究所工作.主要从事新型低成本多电子储能体系的研究,作为负责人和主要参与者承担国家自然科学青年基金及青岛市源头计划等多项科研项目;周新红,青岛科技大学副教授,硕士生导师,2005年毕业于清华大学化学系,获理学博士学位,师从佟振合院士.目前主要从事于能源化学、材料和新型能源器件的研究.主要的研究方向为高能量密度锂离子电池中的新材料研究和太阳能电池及其光伏器件的研究.

收稿日期: 2018-06-27

  网络出版日期: 2018-07-27

基金资助

项目受国家自然科学基金(Nos.21601195,51625204,21671196)、青岛市应用基础研究计划(No.17-1-1-30-jch)及青岛市太阳能与储能技术重点实验室资助.

Research Progress of Ionic Liquid-Inorganic Particle Hybrid Electrolytes in Secondary Batteries

  • Qiu Huayu ,
  • Zhao Jingwen ,
  • Zhou Xinhong ,
  • Cui Guanglei
Expand
  • a Qingdao University of Science & Technology, College of Chemistry and Molecular Engineering, Qingdao 266042;
    b Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao Industrial Energy Storage Technology Institute, Qingdao 266101

Received date: 2018-06-27

  Online published: 2018-07-27

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21601195, 51625204, 21671196), the Qingdao Science and Technology Program (No. 17-1-1-30-jch) and the Qingdao Key Lab of Solar Energy Utilization & Energy Storage Technology.

摘要

高性能电解质是制备高能量密度、长循环寿命、良好安全性二次电池的关键材料之一.然而,传统的有机以及水系电解质,由于诸多限制(例如,电位窗口窄、离子电导率低、枝晶、"胀气"和腐蚀等)已不能满足安全、高效二次电池的发展需求.近年来,离子液体-纳米颗粒杂化电解质(IL-NPHE)体系由于具有高稳定、不可燃及多种协同特性而备受关注.专注于IL-NPHE研究的最新进展,对此类电解质体系的物化特性及电化学性能进行了归纳.同时,系统总结了离子液体和无机颗粒之间的协同作用机理.基于上述评述,展望了IL-NPHE的未来发展趋势和方向.

本文引用格式

邱华玉 , 赵井文 , 周新红 , 崔光磊 . 离子液体-无机颗粒杂化电解质在二次电池中的研究进展[J]. 化学学报, 2018 , 76(10) : 749 -756 . DOI: 10.6023/A18060248

Abstract

High-performance electrolyte is one of the key materials for achieving secondary batteries with high energy density, long cycle life and good safety. Traditional organic and aqueous systems, however, due to many restrictions (such as narrow potential window, low ionic conductivity, dendrite, gas expansion and corrosion, etc.), are unable to meet the demand of the further development for secondary batteries. In recent years, ionic liquid-inorganic particle hybrid electrolytes (IL-NPHE) have attracted much attention due to their high stabilities, non-combustibilities and various synergistic characteristics. This paper focuses on the latest research progress of IL-NPHE, and summarizes the physicochemical and electrochemical properties of this electrolyte system. Additionally, the synergistic mechanism between ionic liquid and inorganic particles is systematically summarized. Based on the above discussion, the future development trend and direction of IL-NPHE are prospected.

参考文献

[1] Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. Science 2015, 350, 938.
[2] Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K. S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; Mueller, K. T.; Liu, J. Nat. Energy 2016, 1, 16039.
[3] Suo, L.; Borodin, O.; Wang, Y.; Rong, X.; Sun, W.; Fan, X.; Xu, S.; Schroeder, M. A.; Cresce, A. V.; Wang, F.; Yang, C.; Hu, Y.-S.; Xu, K.; Wang, C. Adv. Energy Mater. 2017, 7, 1701189.
[4] Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8, 621.
[5] Hallett, J. P.; Welton, T. Chem. Rev. 2011, 111, 3508.
[6] Plechkova, N. V.; Seddon, K. R. Chem. Soc. Rev. 2008, 37, 123.
[7] Scrosati, B.; Hassoun, J.; Sun, Y.-K. Energy Environ. Sci. 2011, 4, 3287.
[8] Xia, L.; Yu, L.-P.; Hu, D.; Chen, Z. Acta Chim. Sinica 2017, 75, 1183. (夏兰, 余林颇, 胡笛, 陈政, 化学学报, 2017, 75, 1183.)
[9] Wang, M.; Ma, R.-G.; Liu, Y.; Chung, C.-Y.; Deng, Y.-H.; Lu, Z.-G. Chin. J. Chem. 2017, 35, 1299.
[10] Scrosati, B.; Garche, J. J. Power Sources 2010, 195, 2419.
[11] Herranz, J.; Garsuch, A.; Gasteiger, H. A. J. Phys. Chem. C 2012, 116, 19084.
[12] Elia, G. A.; Hassoun, J.; Kwak, W. J.; Sun, Y. K.; Scrosati, B.; Mueller, F.; Bresser, D.; Passerini, S.; Oberhumer, P.; Tsiouvaras, N.; Reiter, J. Nano Lett. 2014, 14, 6572.
[13] Nakamoto, H.; Suzuki, Y.; Shiotsuki, T.; Mizuno, F.; Higashi, S.; Takechi, K.; Asaoka, T.; Nishikoori, H.; Iba, H. J. Power Sources 2013, 243, 19.
[14] Xu, J.-Q.; Yang, J.; NuLi, Y.-N.; Zhang, W.-B. Acta Chim. Sinica 2005, 63, 1733. (许金强, 杨军, 努丽燕娜, 张万斌, 化学学报, 2005, 63, 1733.)
[15] Monti, D.; Jonsson, E.; Rosa Palacin, M.; Johansson, P. J. Power Sources 2014, 245, 630.
[16] Wongittharom, N.; Lee, T.-C.; Wang, C.-H.; Wang, Y.-C.; Chang, J.-K. J. Mater. Chem. A 2014, 2, 5655.
[17] Li, C.-Y.; Patra, J.; Yang, C.-H.; Tseng, C.-M.; Majumder, S. B.; Dong, Q.-F.; Chang, J.-K. ACS Sustainable Chem. Eng. 2017, 5, 8269.
[18] Yamamoto, T.; Matsumoto, K.; Hagiwara, R.; Nohira, T. J. Phys. Chem. C 2017, 121, 18450.
[19] Fu, L.-J.; Li, N.; Liu, Y.; Wang, W.-G.; Zhu, Y.-S.; Wu, Y.-P. Chin. J. Chem. 2017, 35, 13.
[20] Saito, Y.; Umecky, T.; Niwa, J.; Sakai, T.; Maeda, S. J. Phys. Chem. B 2007, 111, 11794.
[21] Lu, Y.; Das, S. K.; Moganty, S. S.; Archer, L. A. Adv. Mater. 2012, 24, 4430.
[22] Lu, Y.; Moganty, S. S.; Schaefer, J. L.; Archer, L. A. J. Mater. Chem. 2012, 22, 4066.
[23] Chen, L.; Cros, C.; Castagnet, R.; Hagenmuller, P. Solid State Ionics 1988, 31, 209.
[24] Shimano, S.; Zhou, H.; Honma, I. Chem. Mater. 2007, 19, 5216.
[25] Li, Z.-H.; Jiang, J.; Zhang, H.-P.; Wu, Y.-P. Acta Chim. Sinica 2007, 65, 1333. (李朝晖, 蒋晶, 张汉平, 吴宇平, 化学学报, 2007, 65, 1333.)
[26] Ueno, K.; Hata, K.; Katakabe, T.; Kondoh, M.; Watanabe, M. J. Phys. Chem. B 2008, 112, 9013.
[27] Wang, P.; Zakeeruddin, S. M.; Comte, P.; Exnar, I.; Grätzel, M. J. Am. Chem. Soc. 2003, 125, 1166.
[28] Fukushima, T.; Kosaka, A.; Ishimura, Y.; Yamamoto, T.; Tak-igawa, T.; Ishii, N.; Aida, T. Science 2003, 300, 2072.
[29] Hamm, S. C.; Basuray, S.; Mukherjee, S.; Sengupta, S.; Mathai, J. C.; Baker, G. A.; Gangopadhyay, S. J. Mater. Chem. A 2014, 2, 792.
[30] Li, M.; Zhu, W.; Zhang, P.; Chao, Y.; He, Q.; Yang, B.; Li, H.; Borisevich, A.; Dai, S. Small 2016, 12, 3535.
[31] Taherkhani, F.; Kiani, S. J. Phys. Chem. C 2017, 121, 24434.
[32] Neouze, M. A.; Le Bideau, J.; Leroux, F.; Vioux, A. Chem. Commun. 2005, 1082.
[33] Litschauer, M.; Neouze, M.-A. J. Mater. Chem. 2008, 18, 640.
[34] Richter, T. V.; Stelzl, F.; Schulz-Gericke, J.; Kerscher, B.; Wuerfel, U.; Niggemann, M.; Ludwigs, S. J. Mater. Chem. 2010, 20, 874.
[35] Neouze, M.-A. J. Mater. Chem. 2010, 20, 9593.
[36] Le Bideau, J.; Viau, L.; Vioux, A. Chem. Soc. Rev. 2011, 40, 907.
[37] Moganty, S. S.; Srivastava, S.; Lu, Y.; Schaefer, J. L.; Rizvi, S. A.; Archer, L. A. Chem. Mater. 2012, 24, 1386.
[38] Li, Y.; Wong, K.-W.; Ng, K.-M. Chem. Commun. 2016, 52, 4369.
[39] Horowitz, A. I.; Panzer, M. J. J. Mater. Chem. 2012, 22, 16534.
[40] Lee, U. H.; Kudo, T.; Honma, I. Chem. Commun. 2009, 3068.
[41] Wu, F.; Chen, N.; Chen, R.; Zhu, Q.; Ban, J.; Li, L. Chem. Mater. 2016, 28, 848.
[42] Moganty, S. S.; Jayaprakash, N.; Nugent, J. L.; Shen, J.; Archer, L. A. Angew. Chem., Int. Ed. 2010, 49, 9158.
[43] Zhao, N.; Liu, Y.; Zhao, X.; Song, H. Nanoscale 2016, 8, 1545.
[44] Deb, D.; Bhattacharya, S. J. Phys. Chem. C 2017, 121, 6962.
[45] Dutta, B.; Deb, D.; Bhattacharya, S. Int. J. Hydrogen Energy 2018, 43, 4081.
[46] Yang, G.; Chanthad, C.; Oh, H.; Ayhan, I. A.; Wang, Q. J. Mater. Chem. A 2017, 5, 18012.
[47] Li, X.; Zhang, Z.; Yin, K.; Yang, L.; Tachibana, K.; Hirano, S.-I. J. Power Sources 2015, 278, 128.
[48] Wu, F.; Chen, N.; Chen, R.; Wang, L.; Li, L. Nano Energy 2017, 31, 9.
[49] Li, X.; Zhang, Z.; Yang, L.; Tachibana, K.; Hirano, S.-I. J. Power Sources 2015, 293, 831.
[50] Kim, J.-K.; Scheers, J.; Park, T. J.; Kim, Y. ChemSusChem 2015, 8, 636.
[51] Bose, P.; Bhattacharya, S. J. Electrochem. Soc. 2017, 164, H788.
[52] Bose, P.; Bhattacharya, S. Int. J. Hydrogen Energy 2018, 43, 4090.
[53] Galinski, M.; Lewandowski, A.; Stepniak, I. Electrochim. Acta 2006, 51, 5567.
[54] Lewandowski, A.; Swiderska-Mocek, A. J. Power Sources 2009, 194, 601.
[55] Garaga, M. N.; Persson, M.; Yaghini, N.; Martinelli, A. Soft Matter 2016, 12, 2583.
[56] Yuan, J.; Mecerreyes, D.; Antonietti, M. Prog. Polym. Sci. 2013, 38, 1009.
[57] Pont, A.-L.; Marcilla, R.; De Meatza, I.; Grande, H.; Mecerreyes, D. J. Power Sources 2009, 188, 558.
[58] Mecerreyes, D. Prog. Polym. Sci. 2011, 36, 1629.
[59] Fukushima, T.; Kosaka, A.; Yamamoto, Y.; Aimiya, T.; Notazawa, S.; Takigawa, T.; Inabe, T.; Aida, T. Small 2006, 2, 554.
[60] Li, X.; Li, S.; Zhang, Z.; Huang, J.; Yang, L.; Hirano, S.-I. J. Mater. Chem. A 2016, 4, 13822.
[61] Guyomard-Lack, A.; Abusleme, J.; Soudan, P.; Lestriez, B.; Guyomard, D.; Le Bideau, J. Adv. Energy Mater. 2014, 4, 1301570.
[62] Deb, D.; Bhattacharya, S. Electrochim. Acta 2017, 245, 430.
[63] Goebel, R.; Hesemann, P.; Weber, J.; Moeller, E.; Friedrich, A.; Beuermann, S.; Taubert, A. Phys. Chem. Chem. Phys. 2009, 11, 3653.
[64] Gupta, A. K.; Verma, Y. L.; Singh, R. K.; Chandra, S. J. Phys. Chem. C 2014, 118, 1530.
[65] Verma, Y. L.; Tripathi, A. K.; Shalu; Singh, V. K.; Balo, L.; Gupta, H.; Singh, S. K.; Singh, R. K. Mater. Sci. Eng., B 2017, 220, 37.
[66] Korf, K. S.; Lu, Y.; Kambe, Y.; Archer, L. A. J. Mater. Chem. A 2014, 2, 11866.
[67] Archie, G. E. Trans. Am. Inst. Min., Metall. Pet. Eng. 1942, 146, 54.
[68] Maier, J. Nat. Mater. 2005, 4, 805.
[69] Maier, J. J. Electroceram. 2015, 34, 69.
[70] Wang, H.; Xu, X.-Q.; Shi, J.-F.; Xu, G. Acta Phys.-Chim. Sin. 2007, 29, 525. (王海, 徐雪青, 史继富, 徐刚, 物理化学学报, 2007, 29, 525.)

文章导航

/