静电纺丝在钠离子电池中的应用研究进展
收稿日期: 2018-04-03
网络出版日期: 2018-08-13
基金资助
项目受中央高校基本科研业务费(No.xjj2016052)、陕西省自然科学基金(No.2017JM2022)、江苏省自然科学基金(No.BK20170416)和中国博士后科学基金(No.2014M560225)资助.
Research Progress on Electrospun Materials for Sodium-Ion Batteries
Received date: 2018-04-03
Online published: 2018-08-13
Supported by
Project supported by the Fundamental Research Funds for the Central Universities (No. xjj2016052), Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JM2022), Natural Science Fund of Jiangsu Province (No. BK20170416) and China Postdoctoral Science Foundation Funded Project (No. 2014M560225).
钠离子电池具有与锂离子电池相似工作机理,因其原料资源丰富,是一种极具应用前景的新一代储能设备.然而,钠离子电池面临着电极材料体积膨胀过大、钠离子传输动力学较慢和能量密度偏低等问题,阻碍了其实用化.静电纺丝技术合成的一维钠离子电池电极材料,可通过形貌调控或碳复合方式有效缓冲储钠过程中电极的体积膨胀,而且具有连续的电子传递和较短的离子传输路径,从而改善钠离子传输动力学,以提高电池倍率性能.通过电纺还可简便地制备直接用于钠离子电池的柔性纤维膜来提高电池的能量密度.综述了静电纺丝技术制备钠离子电池材料的研究进展,主要包括正极和负极材料,对今后静电纺丝在钠离子电池中的发展进行了展望.
王玲 , 杨国锐 , 王嘉楠 , 王思岚 , 彭生杰 , 延卫 . 静电纺丝在钠离子电池中的应用研究进展[J]. 化学学报, 2018 , 76(9) : 666 -680 . DOI: 10.6023/A18040129
The scarce lithium resources would ultimately fail to satisfy the ever-growing industrial demand, especially for the large-scale stationary energy storage. Sodium-ion batteries (SIBs) are considered as promising next-generation power sources because sodium is widely available and exhibits similar chemistry to that of lithium-ion batteries (LIBs). Although sodium share similar physical and chemical properties to lithium, the lager ionic radius, heavier molar mass and less negative redox potential of Na+/Na of the sodium jointly lead to some issues beset the SIBs, such as sluggish sodiation kinetics, larger volume expansion and lower energy density, which need to be tackled to promote the practical applications of the SIBs. Therefore, developing appropriate electrode materials is crucial to achieve SIBs with long lifespan and high energy density. One-dimensional nanostructures can provide orientated electronic (ionic) transport and strong tolerance to volume change, thus enhancing the electrochemical performance of electrode materials. Electrospinning technique is a low cost and versatile method to fabricate continuous one-dimensional functional materials with various morphology and targeted components that has been widely applied in SIBs. The volume change could be buffered efficiently by facilely modifying the morphology of electrospun materials or in-situ compositing with carbon materials. Benefiting from the ultra-high aspect ratio, electrospun one-dimensional electrodes can reduce the ionic transport distance, while provide continuous transport way for electron along the longitudinal direction, which is helpful to improve the sluggish sodiation kinetics. It is also worth noting that free-standing or flexible fibers could be easily obtained via the electrospinning technique, which can be used as binder-free electrode to enhance the energy density of the batteries. The research progress on electrospun materials for sodium-ion batteries is summarized in this review, including cathode materials and anode materials. Their electrochemical performance in sodium storage is discussed in detail. The advantages and challenges of these materials were pointed out, and the future development of electrospun materials for sodium ion batteries was also prospected.
[1] Pan, H.; Hu, Y.; Chen, L. Energ. Environ. Sci. 2013, 6, 2338.
[2] Hwang, J.; Myung, S.; Sun, Y. Chem. Soc. Rev. 2017, 46, 3529.
[3] Kim, H.; Kim, H.; Ding, Z.; Lee, M.; Lim, K.; Yoon, G.; Kang, K. Adv. Energy Mater. 2016, 6, 1600943.
[4] Samin, N.; Rusdi, R.; Kamarudin, N.; Kamarulzaman, N. Adv. Mater. Res. 2012, 545, 185.
[5] Tanabe, D.; Shimono, T.; Kobayashi, W.; Moritomo, Y. Phys. Status Solidi-R. 2014, 8, 287.
[6] Park, K.; Yu, B.; Goodenough, J. Chem. Mater. 2015, 27, 6682.
[7] Billaud, J.; Clement, R.; Armstrong, A.; Canales-Vazquez, J.; Rozier, P.; Grey, C.; Bruce, P. J. Am. Chem. Soc. 2014, 136, 17243.
[8] Kim, H.; Shakoor, R.; Park, C.; Lim, S.; Kim, J.; Jo, Y.; Cho, W.; Miyasaka, K.; Kahraman, R.; Jung, Y.; Choi, J. Adv. Funct. Mater. 2013, 23, 1147.
[9] Zheng, Q.; Liu, W.; Li, X.; Zhang, H.; Feng, K.; Zhang, H. J. Mater. Chem. A 2016, 4, 19170.
[10] Zhang, Q.; Wang, W.; Wang, Y.; Feng, P.; Wang, K.; Cheng, S.; Jiang, K. Nano Energy 2016, 20, 11.
[11] Zhao, J.; Gao, Y.; Liu, Q.; Meng, X.; Chen, N.; Wang, C.; Du, F.; Chen, G. Chemistry 2017.
[12] Kubota, K.; Komaba, S. J. Electrochem. Soc. 2015, 162, A2538.
[13] Li, H.; Wu, C.; Wu, F.; Bai, Y. Acta Chim. Sinica, 2014, 72, 21(in Chinese). (李慧, 吴川, 吴锋, 白莹, 化学学报, 2014, 72, 21)
[14] Zhang, Q.; Uchaker, E.; Candelaria, S.; Cao, G. Chem. Soc. Rev. 2013, 42, 3127.
[15] Liu, D.; Cao, G. Energ. Environ. Sci. 2010, 3, 1218.
[16] Lee, J.; Lee, J.; Chung, K.; Jung, H.; Kim, H.; Mun, J.; Choi, W. Electrochim. Acta 2016, 200, 21.
[17] Cao, Y.; Xiao, L.; Sushko, M.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L.; Yang, Z.; Liu, J. Nano Lett. 2012, 12, 3783.
[18] Luo, W.; Schardt, J.; Bommier, C.; Wang, B.; Razink, J.; Si-monsen, J.; Ji, X. J. Mater. Chem. A 2013, 1, 10662.
[19] Ryu, W.; Jung, J.; Park, K.; Kim, S.; Kim, I. Nanoscale 2014, 6, 10975.
[20] Liao, S.; Sun, Y.; Wang, J.; Cui, H.; Wang, C. Electrochim. Acta 2016, 211, 11.
[21] Fu, F.; Li, J.; Yao, Y.; Qin, X.; Dou, Y.; Wang, H.; Tsui, J.; Chan, K.; Shao, M. ACS Appl. Mater. Inter. 2017, 9, 16194.
[22] Zhang, Q.; Guo, Y.; Guo, K.; Zhai, T.; Li, H. Chem. Commun. 2016, 52, 6229.
[23] Liu, Y.; Zhang, N.; Kang, H.; Shang, M.; Jiao, L.; Chen, J. Chemistry 2015, 21, 11878.
[24] Wang, J.; Yang, G.; Wang, L.; Yan, W. J. Mater. Chem. A 2016, 4, 8620.
[25] Mai, L.; Xu, L.; Han, C.; Xu, X.; Luo, Y.; Zhao, S.; Zhao, Y. Nano Lett. 2010, 10, 4750.
[26] Ren, Y.; Yang, B.; Wei, H.; Ding, J. Solid State Ionics 2016, 292, 27.
[27] Greiner, A.; Wendorff, J. Angew. Chem. Int. Ed. 2007, 46, 5670.
[28] Jung, J.; Lee, C.; Yu, S.; Kim, I. J. Mater. Chem. A 2016, 4, 703.
[29] Li, W.; Zeng, L.; Yang, Z.; Gu, L.; Wang, J.; Liu, X.; Cheng, J.; Yu, Y. Nanoscale 2014, 6, 693.
[30] Xiang, X.; Lu, Y.; Chen, J. Acta Chim. Sinica 2017, 75, 154(in Chinese). (向兴德, 卢艳莹, 陈军, 化学学报, 2017, 75, 154.)
[31] Li, M.; Liu, L.; Wang, P.; Li, J.; Leng, Q.; Cao, G. Electrochim. Acta, 2017, 252, 523.
[32] Liu, J.; Tang, K.; Song, K.; Aken, P.; Yu, Y.; Maier, J. Nanoscale, 2014, 6, 5081.
[33] Li, H.; Bai, Y.; Wu, F.; Li, Y.; Wu, C. J. Power Sources, 2015, 273, 784.
[34] Li, H.; Bai, Y.; Wu, F.; Ni, Q.; Wu, C. Solid State Ionics 2015, 278, 281.
[35] Zhu, Q.; Nan, B.; Shi, Y.; Zhu, Y.; Wu, S.; He, L.; Deng, Y.; Wang, L.; Chen, Q.; Lu, Z. J. Solid State Electrochem. 2017, 21, 2985.
[36] Kajiyama, S.; Kikkawa, J.; Hoshino, J.; Okubo, M.; Hosono, E. Chemistry, 2014, 20, 12636.
[37] Barker, J.; Saidi, M.; Swoyer, J. Electrochem. Solid-State Lett. 2003, 6, A1.
[38] Jin, T.; Liu, Y.; Li, Y.; Cao, K.; Wang, X.; Jiao, L. Adv. Energy Mater. 2017, 7, 1700087.
[39] Liu, L.; Qi, X.; Hu, Y.; Chen, L.; Huang, X. Acta Chim. Sinica, 2017, 75, 218(in Chinese). (刘丽露, 戚兴国, 胡勇胜, 陈立泉, 黄学杰, 化学学报, 2017, 75, 218.)
[40] Fu, B.; Zhou, X.; Wang, Y. J. Power Sources 2016, 310, 102.
[41] Kalluri, S.; Seng, K.; Pang, W.; Guo, Z.; Chen, Z.; Liu, H.; Dou, S. ACS Appl. Mater. Inter. 2014, 6, 8953.
[42] Kalluri, S.; Pang, W.; Seng, K.; Chen, Z.; Guo, Z.; Liu, H.; Dou, S. J. Mater. Chem. A 2015, 3, 250.
[43] Niu, C.; Meng, J.; Wang, X.; Han, C.; Yan, M.; Zhao, K.; Xu, X.; Ren, W.; Zhao, Y.; Xu, L.; Zhang, Q.; Zhao, D.; Mai, L. Nat. Commun. 2015, 6, 7402.
[44] Niu, Y.; Xu, M.; Dai, C.; Shen, B.; Li, C. Phys. Chem. Chem. Phys. 2017, 19, 17270.
[45] Yu, T.; Lin, B.; Li, Q.; Wang, X.; Qu, W.; Zhang, S.; Deng, C. Phys. Chem. Chem. Phys. 2016, 18, 26933.
[46] Gocheva, I.; Nishijima, M.; Doi, T.; Okada, S.; Yamaki, J.; Nishida, T. J. Power Sources 2009, 187, 247.
[47] Lu, Y.; Wang, L.; Cheng, J.; Goodenough, J. Chem. Commun. 2012, 48, 6544.
[48] Zhao, R.; Zhu, L.; Cao, Y.; Ai, X.; Yang, H. Electrochem. Commun. 2012, 21, 36.
[49] Zhou, M.; Xiong, Y.; Cao, Y.; Ai, X.; Yang, H. J. Polym. Sci. Pol. Phys. 2013, 51, 114.
[50] Zhang, S.; Zhang, J.; Wu, S.; Lv, W.; Kang, F.; Yang, Q. Acta Chim. Sinica 2017, 75, 163(in Chinese). (张思伟, 张俊, 吴思达, 吕伟, 康飞宇, 杨全红, 化学学报, 2017, 75, 163.)
[51] Ge, P.; Fouletier, M. Solid State Ionics 1988, 28, 1172.
[52] Doeff, M.; Ma, Y.; Visco, S.; Jonghe, L. C. D. J. Electrochem. Soc. 1993, 140, L169.
[53] Zhang, B.; Kang, F.; Tarascon, J.; Kim, J. Prog. Mater Sci. 2016, 76, 319.
[54] Chen, T.; Liu, Y.; Pan, L.; Lu, T.; Yao, Y.; Sun, Z.; Chua, D.; Chen, Q. J. Mater. Chem. A 2014, 2, 4117.
[55] Jin, J.; Shi, Z.; Wang, C. Electrochim. Acta 2014, 141, 302.
[56] Jin, J.; Yu, B.; Shi, Z.; Wang, C.; Chong, C. J. Power Sources 2014, 272, 800.
[57] Zhao, P.; Zhang, J.; Li, Q.; Wang, C. J. Power Sources 2016, 334, 170.
[58] Zhao, P.; Yu, B.; Sun, S.; Guo, Y.; Chang, Z.; Li, Q.; Wang, C. Electrochim. Acta 2017, 232, 348.
[59] Liu, Y.; Zhang, N.; Yu, C.; Jiao, L.; Chen, J. Nano Lett. 2016, 16, 3321.
[60] Zhu, J.; Chen, C.; Lu, Y.; Ge, Y.; Jiang, H.; Fu, K.; Zhang, X. Carbon 2015, 94, 189.
[61] Qi, Y.; Fan, W.; Nan, G. Mater. Lett. 2017, 189, 206.
[62] Chen, Z.; Wang, T.; Zhang, M.; Cao, G. Small 2017, 13, 1604045.
[63] Wang, S.; Xia, L.; Yu, L.; Zhang, L.; Wang, H.; Lou, X. Adv. Energy Mater. 2016, 6, 1502217.
[64] Guo, X.; Zhang, X.; Song, H.; Zhou, J. J. Mater. Chem. A 2017, 5, 21343.
[65] Xu, J.; Wang, M.; Wickramaratne, N.; Jaroniec, M.; Dou, S.; Dai, L. Adv. Mater. 2015, 27, 2042.
[66] Liu, Y.; Fan, L.; Jiao, L. J. Mater. Chem. A 2017, 5, 1698.
[67] Xiong, H.; Slater, M.; Balasubramanian, M.; Johnson, C.; Rajh, T. J. Phys. Chem. Lett. 2011, 2, 2560.
[68] Bi, Z.; Paranthaman, M.; Menchhofer, P.; Dehoff, R.; Bridges, C.; Chi, M.; Guo, B.; Sun, X.; Dai, S. J. Power Sources 2013, 222, 461.
[69] Yang, X.; Wang, C.; Yang, Y.; Zhang, Y.; Jia, X.; Chen, J.; Ji, X. J. Mater. Chem. A 2015, 3, 8800.
[70] Wu, L.; Buchholz, D.; Bresser, D.; Chagas, L.; Passerini, S. J. Power Sources 2014, 251, 379.
[71] Shi, X.; Zhang, Z.; Du, K.; Lai, Y.; Fang, J.; Li, J. J. Power Sources 2016, 330, 1.
[72] Zhang, Y.; Pu, X.; Yang, Y.; Zhu, Y.; Hou, H.; Jing, M.; Yang, X.; Chen, J.; Ji, X. Phys. Chem. Chem. Phys. 2015, 17, 15764.
[73] Huang, J.; Yuan, D.; Zhang, H.; Cao, Y.; Li, G.; Yang, H.; Gao, X. RSC Adv. 2013, 3, 12593.
[74] Pérez-Flores, J.; Baehtz, C.; Kuhn, A.; García-Alvarado, F. J. Mater. Chem. A 2014, 2, 1825.
[75] Su, D.; Dou, S.; Wang, G. Chem. Mater. 2015, 27, 6022.
[76] Wu, Y.; Jiang, Y.; Shi, J.; Gu, L.; Yu, Y. Small 2017, 13, 1700129.
[77] Hwang, J.; Myung, S.; Lee, J.; Abouimrane, A.; Belharouak, I.; Sun, Y. Nano Energy 2015, 16, 218.
[78] Wu, Y.; Liu, X.; Yang, Z.; Gu, L.; Yu, Y. Small 2016, 12, 3522.
[79] Shen, J.; Hu, W.; Li, Y.; Li, L.; Lv, X.; Zhang, L. J. Alloys Compd. 2017, 701, 372.
[80] Udomsanti, P.; Vongsetskul, T.; Limthongkul, P.; Tangboriboonrat, P.; Subannajui, K.; Tammawat, P. Electrochim. Acta 2017, 238, 349.
[81] Xiong, Y.; Qian, J.; Cao, Y.; Ai, X.; Yang, H. ACS Appl. Mater. Inter. 2016, 8, 16684.
[82] Ge, Y.; Zhu, J.; Lu, Y.; Chen, C.; Qiu, Y.; Zhang, X. Electrochim. Acta 2015, 176, 989.
[83] Yeo, Y.; Jung, J.; Park, K.; Kim, I. Sci. Rep. 2015, 5, 13862.
[84] Lee, N.; Jung, J.; Lee, J.; Jang, H.; Kim, I.; Ryu, W. Electrochim. Acta 2018, 263, 417.
[85] Zou, W.; Fan, C.; Li, J. Chin. J. Chem. 2017, 35, 79.
[86] Liu, J.; Tang, K.; Song, K.; Aken, P.; Yu, Y.; Maier, J. Phys. Chem. Chem. Phys. 2013, 15, 20813.
[87] Wu, C.; Kopold, P.; Ding, Y.; Aken, P.; Maier, J.; Yu, Y. ACS Nano 2015, 9, 6610.
[88] Wang, D.; Liu, Q.; Chen, C.; Li, M.; Meng, X.; Bie, X.; Wei, Y.; Huang, Y.; Du, F.; Wang, C.; Chen, G. ACS Appl. Mater. Inter. 2016, 8, 2238.
[89] Hu, Q.; Yu, M.; Liao, J.; Wen, Z.; Chen, C. J. Mater. Chem. A 2018, 6, 2365.
[90] Guo, D.; Qin, J.; Zhang, C.; Cao, M. Cryst. Growth Des. 2018, 18, 3291.
[91] Fang, Y.; Xiao, L.; Qian, J.; Cao, Y.; Ai, X.; Huang, Y.; Yang, H. Adv. Energy Mater. 2016, 6, 1502197.
[92] Liu, H.; Liu, Y. Ceram. Int. 2018, 44, 5813.
[93] Li, W.; Zeng, L.; Wu, Y.; Yu, Y. Sci. China Mater. 2016, 59, 287.
[94] Mao, Z.; Zhou, M.; Wang, K.; Wang, W.; Tao, H.; Jiang, K. RSC Adv. 2017, 7, 23122.
[95] Fu, B.; Zhou, X.; Wang, Y. Mater. Lett. 2016, 170, 21.
[96] Wang, X.; Liu, Y.; Wang, Y.; Jiao, L. Small 2016, 12, 4865.
[97] Xia, G.; Gao, Q.; Sun, D.; Yu, X. Small 2017, 13.
[98] Xu, Z.; Yao, S.; Cui, J.; Zhou, L.; Kim, J. Energy Storage Mater. 2017, 8, 10.
[99] Yang, L.; Zhu, Y.; Sheng, J.; Li, F.; Tang, B.; Zhang, Y.; Zhou, Z. Small 2017, 1702588.
[100] Lee, J.; Shin, H.; Lee, C.; Jung, K. Nanoscale Res. Lett. 2016, 11, 45.
[101] Guo, Y.; Zhu, Y.; Yuan, C.; Wang, C. Mater. Lett. 2017, 199, 101.
[102] Wu, L.; Lang, J.; Zhang, P.; Zhang, X.; Guo, R.; Yan, X. J. Mater. Chem. A 2016, 4, 18392.
[103] Xiao, Y.; Lee, S.; Sun, Y. Adv. Energy Mater. 2017, 7, 1601329.
[104] Kitajou, A.; Yamaguchi, J.; Hara, S.; Okada, S. J. Power Sources 2014, 247, 391.
[105] Qu, B.; Ma, C.; Ji, G.; Xu, C.; Xu, J.; Meng, Y. S.; Wang, T.; Lee, J. Y. Adv. Mater. 2014, 26, 3854.
[106] Li, P.; Liu, J.; Sun, W.; Tao, Z.; Chen, J. Acta Chim. Sinica 2018, 76, 286(in Chinese). (李攀, 刘建, 孙惟袆, 陶占良, 陈军, 化学学报, 2018, 76, 286.)
[107] Ryu, W.; Jung, J.; Park, K.; Kim, S.; Kim, I. Nanoscale 2014, 6, 10975.
[108] Chen, C.; Li, G.; Lu, Y.; Zhu, J.; Jiang, M.; Hu, Y.; Cao, L.; Zhang, X. Electrochim. Acta 2016, 222, 1751.
[109] Zhu, C.; Mu, X.; Aken, P.; Yu, Y.; Maier, J. Angew. Chem. Int. Ed. 2014, 53, 2152.
[110] Xiong, X.; Luo, W.; Hu, X.; Chen, C.; Qie, L.; Hou, D.; Huang, Y. Sci. Rep. 2015, 5, 9254.
[111] Cho, J.; Lee, J.; Kang, Y. Sci. Rep. 2016, 6, 23699.
[112] Ko, Y.; Choi, S.; Park, S.; Kang, Y. Nanoscale 2014, 6, 10511.
[113] Zhang, K.; Hu, Z.; Liu, X.; Tao, Z.; Chen, J. Adv. Mater. 2015, 27, 3305.
[114] Cho, J.; Lee, S.; Kang, Y. Sci. Rep. 2016, 6, 23338.
[115] Wu, L.; Hu, X.; Qian, J.; Pei, F.; Wu, F.; Mao, R.; Ai, X.; Yang, H.; Cao, Y. Energ. Environ. Sci. 2014, 7, 323.
[116] Qian, J.; Chen, Y.; Wu, L.; Cao, Y.; Ai, X.; Yang, H. Chem. Commun. 2012, 48, 7070.
[117] Komaba, S.; Matsuura, Y.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Kuze, S. Electrochem. Commun. 2012, 21, 65.
[118] Chevrier, V.; Ceder, G. J. Electrochem. Soc. 2011, 158, A1011.
[119] Dirican, M.; Lu, Y.; Ge, Y.; Yildiz, O.; Zhang, X. ACS Appl. Mater. Inter. 2015, 7, 18387.
[120] Liang, J.; Yuan, C.; Li, H.; Fan, K.; Wei, Z.; Sun, H.; Ma, J. Nano-Micro Lett. 2017, 10.
[121] Liu, Y.; Zhang, N.; Jiao, L.; Chen, J. Adv. Mater. 2015, 27, 6702.
[122] Mao, M.; Yan, F.; Cui, C.; Ma, J.; Zhang, M.; Wang, T.; Wang, C. Nano Lett. 2017, 17, 3830.
[123] Darwiche, A.; Marino, C.; Sougrati, M.; Fraisse, B.; Stievano, L.; Monconduit, L. J. Am. Chem. Soc. 2012, 134, 20805.
[124] Zhu, Y.; Han, X.; Xu, Y.; Liu, Y.; Zheng, S.; Xu, K.; Hu, L.; Wang, C. ACS Nano 2013, 7, 6378.
[125] Zhu, M.; Kong, X.; Yang, H.; Zhu, T.; Liang, S.; Pan, A. Appl. Surf. Sci. 2018, 428, 448.
[126] Ji, L.; Gu, M.; Shao, Y.; Li, X.; Engelhard, M.; Arey, B.; Wang, W.; Nie, Z.; Xiao, J.; Wang, C.; Zhang, J.; Liu, J. Adv. Mater. 2014, 26, 2901.
[127] Chen, C.; Fu, K.; Lu, Y.; Zhu, J.; Xue, L.; Hu, Y.; Zhang, X. RSC Adv. 2015, 5, 30793.
[128] Jia, H.; Dirican, M.; Chen, C.; Zhu, J.; Zhu, P.; Yan, C.; Li, Y.; Dong, X.; Guo, J.; Zhang, X. ACS Appl. Mater. Inter. 2018.
[129] Jin, Y.; Yuan, H.; Lan, J.; Yu, Y.; Lin, Y.; Yang, X. Nanoscale 2017, 9, 13298.
[130] Yin, H.; Cao, M.; Yu, X.; Zhao, H.; Shen, Y.; Li, C.; Zhu, M. Mater. Chem. Front. 2017, 1, 1615.
[131] Zhu, Y.; Wen, Y.; Fan, X.; Gao, T.; Han, F.; Luo, C.; Liou, S.; Wang, C. ACS Nano 2015, 9, 3254.
[132] Ma, X.; Chen, L.; Ren, X.; Hou, G.; Chen, L.; Zhang, L.; Liu, B.; Ai, Q.; Zhang, L.; Si, P.; Lou, J.; Feng, J.; Ci, L. J. Mater. Chem. A 2018, 6, 1574.
[133] Liu, Y.; Zhang, N.; Liu, X.; Chen, C.; Fan, L.; Jiao, L. Energy Storage Mater. 2017, 9, 170.
[134] Fan, X.; Mao, J.; Zhu, Y.; Luo, C.; Suo, L.; Gao, T.; Han, F.; Liou, S.; Wang, C. Adv. Energy Mater. 2015, 5, 1500174.
[135] Jung, S.; Choi, J.; Han, Y. J. Mater. Chem. A 2018, 6, 1772.
[136] Qian, J.; Xiong, Y.; Cao, Y.; Ai, X.; Yang, H. Nano Lett. 2014, 14, 1865.
[137] Li, W.; Chou, S.; Wang, J.; Liu, H.; Dou, S. Chem. Commun. 2015, 51, 3682.
[138] Wang, X.; Chen, K.; Wang, G.; Liu, X.; Wang, H. ACS Nano 2017, 11, 11602.
[139] Fullenwarth, J.; Darwiche, A.; Soares, A.; Donnadieu, B.; Monconduit, L. J. Mater. Chem. A 2014, 2, 2050.
[140] Ge, X.; Li, Z.; Yin, L. Nano Energy 2017, 32, 117.
[141] Kim, S.; Manthiram, A. Chem. Commun. 2016, 52, 4337.
/
〈 |
|
〉 |