不对称烯丙基化反应合成含有三苯胺核心单元的荧光非天然氨基酸衍生物
收稿日期: 2018-06-05
网络出版日期: 2018-08-14
基金资助
项目受国家自然科学基金(No.21602231)和江苏省自然科学基金(No.BK20160396)资助.
Synthesis of Non-Natural Amino Acid Derivatives Bearing Triphenylamine Core Skeleton via Pd-Catalyzed Direct Asymmetric Allylic Alkylation
Received date: 2018-06-05
Online published: 2018-08-14
Supported by
Project supported by the National Natural Science Foundation of China (No. 21602231), and the Natural Science Foundation of Jiangsu Province (No. BK20160396).
张金龙 , 蒋高喜 . 不对称烯丙基化反应合成含有三苯胺核心单元的荧光非天然氨基酸衍生物[J]. 化学学报, 2018 , 76(11) : 890 -894 . DOI: 10.6023/A18060224
Allylic alkylation first pioneered by Tsuji in 1965 and, later adapted by Trost in 1973 with the introduction of phosphine ligands represents one of the straightforward and powerful synthetic tool for new carbon-carbon formation, especially the direct asymmetric allylic alkylation (AAA) has been widely utilized in the synthesis of natural products and pharmaceutical molecules. Conventionally, AAA reactions involve activated allylic alcohol derivatives, such as carbonates, amines, acetates, and halides, which require an equivalent strong base to react with the acidic by-product and inevitably results in stoichiometric waste. From the viewpoint of environmental and atom economy, the direct use of allylic alcohol instead its derivatives is much more practical by virtue of only water being formed as a byproduct. However, one of the challenges existed in such transformations is the poor reactivity of allylic alcohol. In 2006, a breakthrough was first made by Trost group, by using stoichiometric amounts of borane as the critical promoter in the direct AAA reaction of indoles with allylic alcohols. Afterwards, List, Gong, and Zhang reported independently the significant achievements applying aldehyde, pyrazol-5-ones, and ketones as nucleophiles, respectively. In 2004, our group enclosed the Brønsted acid accelerated Pd-catalyzed direct asymmetric allylic alkylation of azlactones with simple allylic alcohols. On the other hand, triphenylamine (TPA) as a strong electron-donating and oxidative stable molecule has been extensively utilized in the new organic electroluminescent materials, special dye synthesis and organic solar cells. Considering the impressive fluorescence emission ability of TPA and basing on these pioneering works, we reasoned that the direct connection of the TPA substructure with amino acid molecules could give rise to the fluorescence emission compounds. Thus, we report here the first installation of the non-natural amino acid derivatives bearing TPA core skeleton via Pd-catalyzed direct AAA reaction and the desired products were obtained with excellent yields (68%~95%) and enantioselectivities (90%~97% ee). The optimized reaction condition is as following:To a dried Schlenk tube were added activated 5 Å MS (100 mg), Pd2(dba)3 (4.0 mol%), L3 (10.0 mol%), solvent toluene (1.0 mL), and was stirred at 60℃ for 20 min. Then the reaction mixture was cooled down to room temperature, azlactones 1 (0.2 mmol), allylic alcohol 2 (0.3 mmol) and benzoic acid (10.0 mol%) in toluene (1.0 mL) was added and continue to stir at 60℃ for 20 h until the reaction was complete (monitored by TLC). The solvent was then removed under vacuum and the residue was purified by flash chromatography on silica gel to afford the desired product.
[1] (a) Tsuji, J. Transition Metal Reagents and Catalysts, Wiley, New York, 2000;
(b) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921;
(c) Kazmaier, U. Curr. Org. Chem. 2003, 7, 317;
(d) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258; Angew. Chem. 2008, 120, 264;
(e) Norsikian, S.; Chang, C.-W. Curr. Org. Synth. 2009, 6, 264;
(f) Montserrat, D.; Oscar, P. Acc. Chem. Res. 2010, 43, 312.
(g) Trost, B. M.; Zhang, T.; Sieber, J. D. Chem. Sci. 2010, 1, 427;
(h) Zhang, W.; Liu, D. In Chiral Ferrocenes in Asymmetric Catalysis:Synthesis and Applications, Eds.:Dai, L.-X., Hou, X.-L., Wiley-VCH, Weinheim, 2010, Chapter 14;
(i) Weaver, J. D.; Recio, A., Ⅲ; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846;
(j) Trost, B. M. Org. Process Res. Dev. 2012, 16, 185;
(k) Trost, B. M. Top. Organomet. Chem. 2013, 44, 1;
(l) Fu, J.; Huo, X.; Li, B.; Zhang, W. Org. Biomol. Chem. 2017, 15, 9747.
(m) Wu, Y.; Yang, D.; Long, Y. Chin. J. Org. Chem. 2009, 29, 1522. (吴钰娟, 杨定乔, 龙玉华, 有机化学, 2009, 29, 1522.)
(n) Zheng, N.; Song, W. J. Org. Chem. 2017, 37, 1099. (郑楠, 宋汪泽, 有机化学, 2017, 37, 1099.).
(o) Yu, Y.-N.; Xu, M.-H. Acta Chim. Sinica 2017, 75, 655. (于月娜, 徐明华, 化学学报, 2017, 75, 655.)
[2] For recent selected advances, see:(a) Trost, B. M.; Thaisrivongs, D. A.; Hansmann, M. M. Angew. Chem., Int. Ed. 2012, 51, 11522;
(b) Bartlett, M. J.; Turner, C. A.; Harvey, J. E. Org. Lett. 2013, 15, 2430;
(c) Yu, Y.; Yang, X.-F.; Xu, C.-F.; Ding, C.-H.; Hou, X.-L. Org. Lett. 2013, 15, 3880;
(d) Liu, W.-B.; Reeves, C. M.; Virgil, S. C.; Stoltz, B. M. J. Am. Chem. Soc. 2013, 135, 10626;
(e) Quan, M.; Butt, N.; Shen, J.; Shen, K.; Liu, D.; Zhang, W. Org. Biomol. Chem. 2013, 11, 7412;
(f) Huo, X.; Quan, M.; Yang, G.; Zhao, X.; Liu, D.; Liu, Y.; Zhang, W. Org. Lett. 2014, 16, 1570;
(g) Butt, N.; Liu, D.; Zhang, W. Synlett 2014, 615;
(h) Garcia, M. A.; Frey, W.; Peters, R. Organometallics 2014, 33, 1068;
(i) Su, Y.-L.; Li, Y.-H.; Chen, Y.-G.; Han, Z.-Y. Chem. Commun. 2017, 53, 1985;
(j) Saito, A.; Kumagai, N.; Shibasaki, M. Angew. Chem. Int. Ed. 2017, 56, 5551;
(k) Tang, H.-M.; Huo, X.-H.; Meng, Q.-H.; Zhang, W.-B. Acta Chim. Sinica 2016, 74, 219. (汤淏溟, 霍小红, 孟庆华, 张万斌, 化学学报, 2016, 74, 219.)
(l) Yang, J.; Li, N.; Zhou, H.; Li, T.; Xie, D.; Li, Z. Chin. J. Org. Chem. 2017, 37, 2078. (杨靖亚, 李娜娜, 周红艳, 李天媛, 谢栋泰, 李政, 有机化学, 2017, 37, 2078.)
[3] For review, see:
(g) Muzart, J. Tetrahedron 2005, 61, 4179;
(b) Butt, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929. For early works on allylation reactions activated by Lewis acids or Brøsted acid, see:(a) Starý, I.; Stará, I.; Kocovský, P. Tetrahedron Lett. 1993, 34, 179.
(b) Lu, X.; Jiang, X.; Tao, X. J. Organomet. Chem. 1988, 344, 109.
(c) Satoh, T.; Ikeda, M.; Miura, M.; Nomura, M. J. Org. Chem. 1997, 62, 4877.
(d) Kinoshita, H.; Shinokubo, H.; Oshima, K. Org. Lett. 2004, 6, 4085.
[4] For examples using allylic alcohol for AAA reactions, see:(a) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314;
(b) Jiang, G.; List, B. Angew. Chem., Int. Ed. 2011, 50, 9471;
(c) Tao, Z.-L.; Zhang, W.-Q.; Chen, D.-F.; Adele, A.; Gong, L.-Z. J. Am. Chem. Soc. 2013, 135, 9255;
(d) Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2014, 53, 6776; For another recent notable example for the direct allylation of α-branched aromatic aldehydes with allylic alcohols catalyzed by dual-catalytic strategy, see:
(e) Krautwald, S.; Sarlah, D.; Schafroth, M. A.; Carreira, E. M. Science 2013, 340, 1065;
(f) Zhou, H.; Yang, H.; Xia, C.; Jiang, G. Org. Lett. 2014, 16, 5350;
(g) Kita, Y.; Kavthe, R. D.; Oda, H.; Mashima, K. Angew. Chem., Int. Ed. 2016, 55, 1098;
(h) Hirata, G.; Satomura, H.; Kumagae, H.; Shimizu, A.; Onodera, G. Org. Lett. 2017, 19, 6148;
(i) Zhang, Z.-H.; Tao, Z.-L.; Arafate, A.; Gong, L.-Z. Acta Chim. Sinica 2017, 75, 1196. (张子競, 陶忠林, 阿拉法特·阿地力, 龚流柱, 化学学报, 2017, 75, 1196.)
(j) Li, B.; Liu, R.; Liang, R.; Jia, Y. Acta Chim. Sinica 2017, 75, 448. (李保乐, 刘人荣, 梁仁校, 贾义霞, 化学学报, 2017, 75, 448.)
[5] (a) Chua, C. J.; Ren, Y.; Baumgartner, T. B. Org. Lett. 2012, 14, 1588;
(b) Chen, Y.-H.; Lin, C.-C.; Huang, M.-J.; Kung, K.; Wu, Y.-C.; Lin, W.-C.; Chen-Cheng, R.-W.; Lin, H.-W.; Cheng, C.-H. Chem. Sci. 2016, 7, 4044;
(c) Zhan, X.; Wu, Z.; Lin, Y.; Xie, Y.; Peng, Q.; Li, Q.; Ma, D.; Li, Z. Chem. Sci. 2016, 7, 4355;
(d) Li, C.; Duan, R.; Liang, B.; Han, G.; Wang, S.; Ye, K.; Liu, Y.; Yi, Y.; Wang, Y. Angew. Chem., Int. Ed. 2017, 56, 11525;
(e) Liu, Q.; Zhao, C.; Tian, G.; Ge, H. RSC Adv. 2018, 8, 805;
(f) Chen, W.-C.; Yuan, Y.; Zhu, Z.-L.; Jiang, Z.-Q.; Su, S.-J.; Liao, L.-S.; Lee, C.-S. Chem. Sci. 2018, 9, 4062.
[6] (a) Lin, L.-C.; Yen, H.-J.; Chen, C.-J.; Tsai, C.-L.; Liou, G.-S. Chem. Commun. 2014, 50, 13917;
(b) Tang, M.-C.; Tsang, D. P.-K.; Wong, Y.-C.; Chan, M.-Y.; Wong, K. M.-C.; Yam, V. W.-W. J. Am. Chem. Soc. 2014, 136, 17861;
(c) Kawasumi, K.; Wu, T.; Zhu, T.; Chae, H. S.; Voorhis, T. V.; Baldo, M. A.; Swager, T. M. J. Am. Chem. Soc. 2015, 137, 11908.
[7] (a) Roquet, S.; Cravino, A.; Leriche, P.; Alévêque, O.; Frère, P.; Roncali, J. J. Am. Chem. Soc. 2006, 128, 3459;
(b) Hagberg, D. P.; Marinado, T.; Karlsson, K. M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. J. Org. Chem. 2007, 72, 9550;
(c) Esteban, S. G.; de la Cruz, P.; Aljarilla, A.; Arellano, L. M.; Langa, F. Org. Lett. 2011, 13, 5326;
(d) Baheti, A.; Singh, P.; Lee, C.-P.; Thomas, K. R. J.; Ho, K.-C. J. Org. Chem. 2011, 76, 4910;
(e) Zhang, J.; Wu, G.; He, C.; Deng, D.; Li, Y. J. Mater. Chem. 2011, 21, 3768;
(f) Aljrilla, A.; López-Arroyo, L.; de la Cruz, P.; Oswald, F.; Meyer, T. B.; Langa, F. Org. Lett. 2012, 14, 5732;
(g) Tan, Y.; Liang, M.; Lu, Z.; Zheng, Y.; Tong, X.; Sun, Z.; Xue, S. Org. Lett. 2014, 16, 3978;
(h) Li, Z.; Zhu, Z.; Chueh, C.-C.; Jo, S. B.; Luo, J.; Jang, S.-H.; Jen, K.-Y. J. Am. Chem. Soc. 2016, 138, 11833;
(i) Chiykowski, V. A.; Lam, B.; Du, C.; Berlinguette, C. P. Chem. Commun. 2017, 53, 2367.
/
〈 |
|
〉 |