研究通讯

以乙腈为氰甲基源合成氰基化的偕二氟烯烃

  • 刘青雲 ,
  • 赵祥虎 ,
  • 李佳录 ,
  • 曹松
展开
  • 华东理工大学 药学院 上海市化学生物学(芳香杂环)重点实验室 上海 200237

收稿日期: 2018-08-07

  网络出版日期: 2018-09-14

基金资助

项目受国家自然科学基金(Nos.21472043,21272070)资助.

Synthesis of Cyanated Difluorostyrene Derivatives via SN2' Cyanomethylation of α-(Trifluoromethyl)styrenes with Acetonitrile

  • Liu Qingyun ,
  • Zhao Xianghu ,
  • Li Jialu ,
  • Cao Song
Expand
  • Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology (ECUST), Shanghai 200237

Received date: 2018-08-07

  Online published: 2018-09-14

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21472043, 21272070).

摘要

报道了以乙腈为氰甲基源,LiHMDS为碱,在室温下通过氰甲基化α-(三氟甲基)芳基乙烯,合成了一系列氰基化的偕二氟烯烃.该方法具有反应条件相对温和、反应迅速、操作简单、官能团兼容性较好、收率较高等优点.

本文引用格式

刘青雲 , 赵祥虎 , 李佳录 , 曹松 . 以乙腈为氰甲基源合成氰基化的偕二氟烯烃[J]. 化学学报, 2018 , 76(12) : 945 -950 . DOI: 10.6023/A18080322

Abstract

Nitriles are important structural motifs found in agrochemicals, pharmaceuticals, and natural products. Furthermore, nitriles are versatile synthetic precursors for organic synthesis because they can be easily converted into various functionalities, such as amides, ketones, esters, primary amines, aldehydes, carboxylic acids, and nitrogen-containing heterocycles. Therefore, the development of efficient methods for the synthesis of nitrile compounds has attracted much attention from synthetic chemists. Cyanomethylation of various substrates is a synthetically useful reaction because a variety of diversely cyano-containing compounds could be readily prepared. Acetonitrile is the simplest commercially available alkyl nitrile, which can act as the cyanomethyl carbanion source. The traditional method for the cyanomethylation of organic molecules is deprotonation of acetonitrile in the presence of strong base. Alternatively, transition-metal-catalyzed C—H bond activation of acetonitrile represents an attractive approach to cyanomethylated compounds due to its atom and step economy. In this communication, we developed a simple and highly efficient method for the synthesis of cyanated difluorostyrene derivatives by cyanomethylation of α-(trifluoromethyl)styrenes using cheap and commercially available acetonitrile as the CH2CN- source. The reaction proceeded smoothly in the presence of LiHMDS at room temperature and was finished within 1 h, affording the cyanated gem-difluoroalkenes in moderate to good yields. Furthermore, the cyanomethylation reaction exhibited good substrate scope and functional group compatibility. A general procedure for the cyanomethylation of α-(trifluoromethyl)styrenes with acetonitrile is as following: α-(trifluoromethyl)styrenes 1 (0.5 mmol) was dissolved in acetonitrile 2a (4 mL) at room temperature under argon atmosphere. Subsequently, a solution of the LiHMDS in THF (1.5 mL, 1.0 mol/L, 1.5 mmol, 3.0 equiv.) was added dropwise within 50 min and stirring was continued for further 10 min (monitored by TLC). After completion of the reaction, the reaction mixture was quenched with saturated aqueous solution of NH4Cl (15 mL) and extracted with ethyl acetate (5 mL×3). The combined organic layer was dried over anhydrous Na2SO4, filtered, and concentrated under vacuum. The crude residue was then purified by column chromatography on silica gel [(V(hexane)/V(ethyl acetate)=10:1~6:1] directly to afford the pure target compounds.

参考文献

[1] (a) Wang, J.; Liu, H. Chin. J. Org. Chem. 2012, 32, 1643. (王江, 柳红, 有机化学, 2012, 32, 1643.);
(b) Powell, K. J.; Han, L.-C.; Sharma, P.; Moses, J. E. Org. Lett. 2014, 16, 2158.
[2] (a) Rappoport, Z. The Chemistry of the Cyano Group, Interscience Publishers, London, 1970;
(b) Larock, R. C. Comprehensive Organic Transformations:A Guide to Functional Group Preparation, 2nd ed., Wiley-VCH, Weinheim, 1999, p. 821;
(c) Ishii, G.; Harigae, R.; Moriyama, K.; Togo, H. Tetrahedron 2013, 69, 1462;
(d) Ma, X.-T.; Li, B.; Xiao, Y.-L.; Yu, X.-C.; Su, C.-L.; Xu, Q. Chin. J. Org. Chem. 2017, 37, 2034. (马献涛, 李波, 肖映林, 余小春, 苏陈良, 徐清, 有机化学, 2017, 37, 2034.).
[3] (a) McManus, J. B.; Nicewicz, D. A. J. Am. Chem. Soc. 2017, 139, 2880;
(b) Wen, Q.-D.; Jin, J.-S.; Zhang, L.-P.; Luo, Y.; Lu, P.; Wang, Y.-G. Tetrahedron Lett. 2014, 55, 1271;
(c) Anbarasan, P.; Schareina, T.; Beller, M. Chem. Soc. Rev. 2011, 40, 5049;
(d) Ye, X.; Zeng, X.-P.; Zhou, J. Acta Chim. Sinica 2016, 74, 984. (叶旭, 曾兴平, 周剑, 化学学报, 2016, 74, 984.);
(e) Zhou, Q.-Q.; Liu, D.; Xiao, W.-J.; Lu, L.-Q. Acta Chim. Sinica 2017, 75, 110. (周泉泉, 刘丹, 肖文精, 陆良秋, 化学学报, 2017, 75, 110.);
(f) Li, Z.-L.; Sun, K.-K.; Cai, C. Org. Chem. Front. 2018, 5, 1848;
(g) Li, J.-P.; Yin, J.-H.; Yu, C.; Zhang, W.-X.; Xi, Z.-F. Acta Chim. Sinica 2017, 75, 733. (李嘉鹏, 殷剑昊, 俞超, 张文雄, 席振峰, 化学学报, 2017, 75, 733.);
(h) Zhang, W.; Hu, C.-X.; Zhou, X.-G. Chin. J. Org. Chem. 2017, 37, 1246. (张伟, 胡晨旭, 周向葛, 有机化学, 2017, 37, 1246.).
[4] (a) López, R.; Palomo, C. Angew. Chem. Int. Ed. 2015, 54, 13170;
(b) Zhong, S.-S.; Huang, P.; Wang, X.-Y.; Lin, M.; Ge, C.-H. Chin. J. Org. Chem. 2018, 38, 1199. (仲帅帅, 黄鹏, 王兴越, 林觅, 葛春华, 有机化学, 2018, 38, 1199.);
(c) Wang, H.-J.; Zhou, X.-X.; Xia, H.-P. Chin. J. Chem. 2018, 36, 93;
(d) Ao, Y.-F.; Wang, Q.-Q.; Wang, D.-X. Chin. J. Org. Chem. 2016, 36, 2333. (敖宇飞, 王其强, 王德先, 有机化学, 2016, 36, 2333.).
[5] (a) Forslund, K.; Morant, M.; Jørgensen, B.; Olsen, C. E.; Asamizu, E.; Sato, S.; Tabata, S.; Bak, S. Plant Physiol. 2004, 135, 71;
(b) Fleming, F. F.; Yao, L.-H.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.
[6] Fatiadi, A. J. In The Chemistry of Functional Groups, Supplement C:The Chemistry of Triple-Bonded Functional Groups, Part 2, Eds.:Pappoport, Z.; Patai, S., Wiley, London, 1983, p. 1057.
[7] (a) Ni, Z.-Q.; Huang, X.; Wang, J.-C.; Pan, Y.-J. RSC Adv. 2016, 6, 522;
(b) Yu, Y.-L.; Zhuang, S.-Y.; Liu, P.; Sun, P.-P. J. Org. Chem. 2016, 81, 11489;
(c) Zhang, J.; Wu, W.; Ji, X.-F.; Cao, S. RSC Adv. 2015, 5, 20562.
[8] (a) Shen, J.-X.; Yang, D.-J.; Liu, Y.-X.; Qin, S.-S.; Zhang, J.-W.; Sun, J.-K.; Liu, C.-H.; Liu, C.-Y.; Zhao, X.-M.; Chu, C.-H.; Liu, R.-H. Org. Lett. 2014, 16, 350;
(b) Ariafard, A.; Ghari, H.; Khaledi, Y.; Bagi, A. H.; Wierenga, T. S.; Gardiner, M. G.; Canty, A. J. ACS Catal. 2016, 6, 60;
(c) Satoh, Y.; Obora, Y. RSC Adv. 2014, 4, 15736;
(d) Qiao, K.; Zhang, D.; Zhang, K.; Yuan, X.; Zheng, M.-W.; Guo, T.-F.; Fang, Z.; Wan, L.; Guo, K. Org. Chem. Front. 2018, 5, 1129;
(e) Deng, T.; Wang, H.-J.; Cai, C. Eur. J. Org. Chem. 2014, 7259;
(f) Voskressensky, L. G.; Festa, A. A.; Storozhenko, O. A.; Le, T. A.; Nguyen, V. T.; Varlamov, A. V. RSC Adv. 2015, 5, 12442.
[9] (a) Zhang, W.; Yang, S.-P.; Shen, Z.-M. Adv. Synth. Catal. 2016, 358, 2392;
(b) Liu, Y.-B.; Yang, K.; Ge, H.-B. Chem. Sci. 2016, 7, 2804;
(c) Zhang, Y.-X.; Yan, W.-T.; Wang, Y.-K.; Weng, Z.-Q. Org. Lett. 2017, 19, 5478;
(d) Hoff, B. H. Synthesis 2018, 50, 2824;
(e) Rossi, L.; Feroci, M.; Inesi, A. Mini-Reviews Org. Chem. 2005, 2, 79;
(f) Wu, Q.; Li, Y.-B.; Wang, C.-Y.; Zhang, J.-Y.; Huang, M.-M.; Kim, J. K.; Wu, Y.-J. Org. Chem. Front. 2018, 5, 2496.
[10] Kumagai, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 13632.
[11] (a) Kaiser, E. M.; Hauser, C. R. J. Org. Chem. 1968, 33, 3402;
(b) Mamuye, A. D.; Castoldi, L.; Azzena, U.; Holzer, W.; Pace, V. Org. Biomol. Chem. 2015, 13, 1969.
[12] (a) Ko, E. Y.; Lim, C. H.; Chung, K. H. Bull. Korean Chem. Soc. 2006, 27, 432;
(b) Guranova, N. I.; Varlamov, A. V.; Ilyushenkova, V. V.; Sokolova, E. A.; Borisova, T. N.; Aksenov, A. V.; Khrustalev, V. N.; Voskressensky, L. G. Mendeleev Commun. 2017, 27, 506.
[13] Gao, X.-S.; Dong, W.-H.; Hu, B.; Gao, H.; Yuan, Y.; Xie, X.-M.; Zhang, Z.-G. RSC Adv. 2017, 7, 49299.
[14] Rao, V. N. B.; Kumar, K.; Singh, R. P. Org. Biomol. Chem. 2015, 13, 9755.
[15] Gajulapalli, V. P. R.; Vinayagam, P.; Kesavan, V. Org. Biomol. Chem. 2014, 12, 4186.
[16] Velcicky, J.; Soicke, A.; Steiner, R.; Schmalz, H. J. J. Am. Chem. Soc. 2011, 133, 6948.
[17] (a) Wang, K.-C; Chen, X.; Yuan, M.; Yao, M.; Zhu, H.-C.; Xue, Y.-B.; Luo, Z.-W.; Zhang, Y.-H. J. Org. Chem. 2018, 83, 1525;
(b) Wu, T.; Mu, X.; Liu, G.-S. Angew. Chem. 2011, 123, 12786.
[18] (a) Anxionnat, B.; Pardo, D. G.; Ricci, G.; Cossy, J. Org. Lett. 2011, 13, 4084;
(b) Wang, G.-W.; Zhou, A.-X.; Wang, J.-J.; Hu, R.-B.; Yang, S.-D. Org. Lett. 2013, 15, 5270;
(c) Tang, S.; Li, S.-H.; Li, Z.-H.; Zhou, D.; Sheng, R.-L. Tetrahedron Lett. 2015, 56, 1423;
(d) Kumagai, N.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2004, 126, 13632.
[19] (a) Chelucci, G. Chem. Rev. 2012, 112, 1344;
(b) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119;
(c) Zhang, W.-G.; Wang, Y. Tetrahedron Lett. 2018, 59, 1301.
[20] (a) Zhang, X.-X.; Cao, S. Tetrahedron Lett. 2017, 58, 375;
(b) Liu, Y.; Deng, M.-M.; Zhang, Z.-Y.; Ding, X.-H.; Dai, Z.-Q.; Guan, J.-T. Chin. J. Org. Chem. 2012, 32, 661. (刘运, 邓萌萌, 张智勇, 丁肖华, 戴志群, 关金涛, 有机化学, 2012, 32, 661.).
[21] (a) Zhang, Z.-K.; Zhou, Q.; Yu, W.-Z.; Li, T.-J.; Wu, G.-J; Zhang, Y.; Wang, J.-B. Org. Lett. 2015, 17, 2474;
(b) Ichitsuka, T.; Fujita, T.; Ichikawa, J. ACS Catal. 2015, 5, 5947;
(c) Li, C.-P.; Zhang, D.-Y.; Zhu, W.; Wan, P.-H.; Liu, H. Org. Chem. Front. 2016, 3, 1080;
(d) Liu, Y.; Zhou, Y.-H.; Zhao, Y.-L.; Qu, J.-P. Org. Lett. 2017, 19, 946;
(e) Dai, W.-P.; Lin, Y.-Y.; Wan, Y.; Cao, S. Org. Chem. Front. 2018, 5, 55;
(f) Wu, X.-T.; Xie, F.; Gridnev, I. D.; Zhang, W.-B. Org. Lett. 2018, 20, 1638;
(g) Ji, X.-F.; Liu, Y.-S.; Shi, H.-Y.; Cao, S. Tetrahedron 2018, 74, 4155;
(h) Kojima, R.; Akiyama, S.; Ito, H. Angew. Chem., Int. Ed. 2018, 57, 7196;
(i) Hu, M.-Y.; Ni, C.-F.; Li, L.-C.; Han, Y.-X.; Hu, J.-B. J. Am. Chem. Soc. 2015, 137, 14496;
(j) Fuchibe, K.; Takahashi, M.; Ichikawa, J. Angew. Chem., Int. Ed. 2012, 51, 12059.
[22] (a) Fuchibe, K.; Jyono, H.; Fujiwara, M.; Kudo, T.; Yokota, M.; Ichikawa, J. Chem. Eur. J. 2011, 17, 12175;
(b) Li, L.-Y.; Xiao, T.-B.; Chen, H.-G.; Zhou, L. Chem. Eur. J. 2017, 23, 2249;
(c) Fuchibe, K.; Hatta, H.; Oh, K.; Oki, R.; Ichikawa, J. Angew. Chem., Int. Ed. 2017, 56, 5890;
(d) Zhang, Z.-K.; Yu, W.-Z.; Zhou, Q.; Li, T.-J.; Zhang, Y.; Wang, J.-B. Chin. J. Chem. 2016, 34, 473;
(e) Zhang, Z.-K.; Zhou, Q.; Yu, W.-Z.; Li, T.-J.; Zhang, Y.; Wang, J.-B. Chin. J. Chem. 2017, 35, 387.
[23] Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456.

文章导航

/