层状双金属氢氧化物及复合材料对放射性元素铀的吸附及机理研究
收稿日期: 2018-09-26
网络出版日期: 2018-10-10
基金资助
项目受国家自然科学基金(No.21577032)和挑战计划(No.TZ201604)资助.
Investigation of Adsorption Mechanism of Layered Double Hydroxides and Their Composites on Radioactive Uranium:A Review
Received date: 2018-09-26
Online published: 2018-10-10
Supported by
Project supported by the National Natural Science Foundation of China (No. 21577032) and the Science Challenge Project (No. TZ201604).
随着核工业的快速发展,大量放射性元素铀被排放到环境中,造成严重的环境污染并给人类健康带来重大危害.层状双金属氢氧化物(LDHs)因其具有比表面积大、离子交换能力强以及独特的纳米结构等优点,在铀酰离子的去除及环境水污染处理方面展现出巨大潜力.同时,将层状双金属氢氧化物进行改性可大大增加活性位点,进一步提高材料对放射性元素铀的吸附性能.详细介绍了层状双金属氢氧化物及复合材料的制备及改性方法,通过光谱分析技术阐述了层状双金属氢氧化物对环境中铀酰离子的吸附效果以及作用机理.最后,对层状双金属氢氧化物在治理水污染中的应用前景给出个人见解,以期为今后的环境治理工作的深入研究和实际应用提供参考依据.
王宁 , 庞宏伟 , 于淑君 , 顾鹏程 , 宋爽 , 王宏青 , 王祥科 . 层状双金属氢氧化物及复合材料对放射性元素铀的吸附及机理研究[J]. 化学学报, 2019 , 77(2) : 143 -152 . DOI: 10.6023/A18090404
With the rapid development of nuclear industry, nuclear energy, as a kind of low-carbon energy, has been widely used in the world. However, in the development and application of nuclear energy, a large amount of radionuclides, especially the radioactive uranium, have been inevitably discharged into the environment, causing serious environmental pollution and having great harm to human health. Layered double hydroxides (LDHs) have become the excellent adsorbents in environmental pollution treatments due to easy preparation, large specific surface area, the unique nanostructure and excellent ion exchange capacity. Hence, the preparation of layered double hydroxides and their composites for the efficient removal of radioactive uranium is one of the hot issues in the field of environmental science, which include coprecipitation, ion exchange, hydrothermal method, the urea hydrolysis method, aerogel, microwave-crystallization and separate nucleation/crystallization isolation method. Besides the aforementioned methods, other reported synthesis methods of LDHs include the secondary intercalation method (an intercalation method involving dissolution and the re-coprecipitation method), reconstruction method based on the "memory effect", N2 protection synthesis, mechanochemical synthesis, surface synthesis, template synthesis, and others. The modification methods of layered double hydroxides can be divided into calcination, intercalation and compounding method, which significantly increase the active sites and further improve the adsorption performance of the materials to radioactive uranium. In addition, the adsorption mechanism has been thoroughly investigated with spectroscopic analysis techniques such as Fourier transformed infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Extended X-ray absorption fine structure (EXAFS). In conclusion, the review briefly discuss the application prospects of layered double hydroxides and their composites in the treatment of water pollution, which provide definitive reference values for the further research and practical application of environmental management in the future.
Key words: layered double hydroxides; composites; U (VI); environmental pollution; adsorption
[1] Yin, L.; Song, S.; Wang, X. X.; Niu, F. L.; Ma, R.; Yu, S. J.; Wen, T.; Chen, Y. T.; Hayat, T.; Alsaedi, A.; Wang, X. K. Environ. Pollut. 2018, 238, 725.
[2] Pang, H. W.; Wang, X. X.; Yao, W.; Yu, S. J.; Wang, X. K. Sci. Sinica Chim. 2018, 48, 58. (庞宏伟, 王祥学, 姚文, 于淑君, 王祥科, 中国科学:化学, 2018, 48, 58.)
[3] Liang, Y.; Gu, P.; Yao, W.; Yu, S.; Wang, J.; Wang, X. Prog. Chem. 2017, 29, 1062. (梁宇, 顾鹏程, 姚文, 于淑君, 王建, 王祥科, 化学进展, 2017, 29, 1062.)
[4] Sun, Y.; Wu, Z. Y.; Wang, X.; Ding, C.; Cheng, W.; Yu, S. H.; Wang, X. Environ. Sci. Technol. 2016, 50, 4459.
[5] Chen, H. J.; Huang, S. Y.; Zhang, Z. B.; Liu, Y. H.; Wang, X. K. Acta Chim. Sinica 2017, 75, 560. (陈海军, 黄舒怡, 张志宾, 刘云海, 王祥科, 化学学报, 2017, 75, 560.)
[6] Yang, D. X.; Wang, X. X.; Song, G.; Zhao, G. X.; Chen, Z.; Yu, S. J.; Gu, P. C.; Wang, H. Q.; Wang, X. K. Sci. Bull. 2017, 62, 1609.
[7] Sun, Y.; Ding, C.; Cheng, W.; Wang, X. J. Hazard. Mater. 2014, 280, 399.
[8] Ding, C.; Cheng, W.; Sun, Y.; Wang, X. Geochim. Cosmochim. Acta 2015, 165, 86.
[9] Yang, S. Y.; Wang, X. X.; Chen, Z. S.; Li, Q.; Wei, B. B.; Wang, X. K. Prog. Chem. 2018, 30, 225. (杨姗也, 王祥学, 陈中山, 李倩, 韦犇犇, 王祥科, 化学进展, 2018, 30, 225.)
[10] Zhang, T.; Gregory, K.; Hammack, R. W.; Vidic, R. D. Environ. Sci. Technol. 2014, 48, 4596.
[11] Chen, H.; Wang, X.; Li, J.; Wang, X. J. Mater. Chem. A 2015, 3, 6073.
[12] Nigiz, F. U.; Ozkoc, G.; Hilmioglu, N. D. Mater. Design 2015, 88, 942.
[13] Zhang, S.; Li, J.; Wang, X.; Huang, Y.; Zeng, M.; Xu, J. ACS Appl. Mater. Inter. 2014, 6, 22116.
[14] Montaña, M.; Camacho, A.; Serrano, I.; Devesa, R.; Matia, L.; Vallés, I. J. Environ. Radioactiv. 2013, 125, 86.
[15] Ma, L.; Wang, Q.; Islam, S. M.; Liu, Y.; Ma, S.; Kanatzidis, M. G. J. Am. Chem. Soc. 2016, 138, 2858.
[16] Yu, S.; Wang, J.; Song, S.; Sun, K.; Li, J.; Wang, X.; Chen, Z.; Wang, X. Sci. China Chem. 2017, 60, 415.
[17] Yin, L.; Wang, P.; Wen, T.; Yu, S.; Wang, X.; Hayat, T.; Alsaedi, A.; Wang, X. Environ. Pollut. 2017, 226, 125.
[18] Du, Y.; Wang, J.; Zou, Y.; Yao, W.; Hou, J.; Xia, L.; Peng, A.; Alsaedi, A.; Hayat, T.; Wang, X. Sci. Bull. 2017, 62, 913.
[19] Yao, Y.; He, B.; Xu, F.; Chen, X. Chem. Eng. J. 2011, 170, 82.
[20] Hu, W.; Lu, S.; Song, W.; Chen, T.; Hayat, T.; Alsaedie, A.; Chen, C.; Liu, H. Appl. Clay Sci. 2018, 157, 121.
[21] Yang, D.; Song, S.; Zou, Y.; Wang, X.; Yu, S.; Wen, T.; Wang, H.; Hayat, T.; Alsaedi, A.; Wang, X. Chem. Eng. J. 2017, 323, 143.
[22] Wang, X.; Yu, S.; Wu, Y.; Pang, H.; Yu, S.; Chen, Z.; Hou, J.; Alsaedi, A.; Hayat, T.; Wang, S. Chem. Eng. J. 2018, 342, 321.
[23] Wu, X. L.; Wang, L.; Chen, C. L.; Xu, A.-W.; Wang, X. K. J. Mater. Chem. 2011, 21, 17353.
[24] Sun, Z.; Gu, L.; Zheng, J.; Zhang, J.; Wang, L.; Xu, F.; Lin, C. A. Mater. Lett. 2016, 172, 105.
[25] Song, F.; Hu, X. J. Am. Chem. Soc. 2014, 136, 16481.
[26] Li, Y.; Shi, L. W.; Liu, Z. S.; Yang, G. Q. Acta Chim. Sinica 2012, 70, 683. (李燕, 施利文, 刘志山, 杨国庆, 化学学报, 2012, 70, 683.)
[27] Zhou, J. Z.; Wu, Y. Y.; Liu, C.; Orpe, A.; Liu, Q.; Xu, Z. P.; Qian, G. R.; Qiao, S. Z. Environ. Sci. Technol. 2010, 44, 8884.
[28] Zhang, M.; Yao, Q.; Lu, C.; Li, Z.; Wang, W. ACS Appl. Mater. Inter. 2014, 6, 20225.
[29] Tan, X.; Fang, M.; Ren, X.; Mei, H.; Shao, D.; Wang, X. Environ. Sci. Technol. 2014, 48, 13138.
[30] Huang, P. P.; Cao, C. Y.; Wei, F.; Sun, Y. B.; Song, W. G. RSC Adv. 2015, 5, 10412.
[31] Shao, M.; Ning, F.; Zhao, J.; Wei, M.; Evans, D.; Duan, X. J. Am. Chem. Soc. 2012, 134, 1071.
[32] Zhou, L.; Shao, M.; Wei, M.; Duan, X. J. Energy Chem. 2017, 26, 194.
[33] Peng, F.; Luo, T.; Yuan, Y. New J. Chem. 2014, 38, 4427.
[34] Li, J.; Fan, Q.; Wu, Y.; Wang, X.; Chen, C.; Tang, Z.; Wang, X. J. Mater. Chem. A 2016, 4, 1737.
[35] Wang, X.; Pang, H.; Wu, Y.; Yu, S.; Song, G.; Ma, X.; Xu, P. Sci. Sinica Chim. 2018. (王祥学, 庞宏伟, 吴忆涵, 于淑君, 宋刚, 马宵颖, 许佩瑶, 中国科学:化学, 2018.)
[36] Gu, P. C.; Zhang, S.; Li, X.; Wang, X. X.; Wen, T.; Jehan, R.; Alsaedi, A.; Hayat, T.; Wang, X. K. Environ. Pollut. 2018, 240, 493.
[37] Koilraj, P.; Kamura, Y.; Sasaki, K. J. Mater. Chem. A 2018, 6, 10008.
[38] Chen, H.; Che, Z.; Zhao, G.; Zhang, Z.; Xu, C.; Liu, Y.; Chen, J.; Zhuang, L.; Haya, T.; Wang, X. J. Hazard. Mater. 2018, 347, 67.
[39] Morel-Desrosiers, N.; Pisson, J.; Israëli, Y.; Taviot-Guého, C.; Besse, J. P.; Morel, J. P. J. Mater. Chem. 2003, 13, 2582.
[40] Li, J.; Fan, Q.; Wu, Y.; Wang, X.; Chen, C.; Tang, Z.; Wang, X. J. Mater. Chem. A 2016, 4, 1737.
[41] Wang, J.; Li, Y.; Chen, W.; Peng, J.; Hu, J.; Chen, Z.; Wen, T.; Lu, S.; Chen, Y.; Hayat, T.; Ahmad, B.; Wang, X. Chem. Eng. J. 2016, 309, 445.
[42] Wang, W.; Zhou, J.; Achari, G.; Yu, J.; Cai, W. Colloid. Surfaces A 2014, 457, 33.
[43] Jaiswal, A.; Mani, R.; Banerjee, S.; Gautam, R.; Chattopadhyaya, M. J. Mol. Liq. 2015, 202, 52.
[44] Wu, X.; Du, Y.; An, X.; Xie, X. Catal. Commun. 2014, 50, 44.
[45] Yu, H.; Xu, B.; Bian, L.; Gao, H. J. Syn. Cryst. 2010, 39, 1292. (于洪波, 徐冰, 边令喜, 高宏, 人工晶体学报, 2010, 39, 1292.)
[46] Yu, S.; Wang, X.; Pang, H.; Zhang, R.; Song, W.; Fu, D.; Hayat, T.; Wang, X. Chem. Eng. J. 2017, 333, 343.
[47] Yu, S.; Liu, Y.; Ai, Y.; Wang, X.; Zhang, R.; Chen, Z.; Chen, Z.; Zhao, G.; Wang, X. Environ. Pollut. 2018, 242, 1.
[48] Siebecker, M.; Li, W.; Syed, K.; Sparks, D. Nat. Commun. 2014, 5, 5003.
[49] Li, W.; Livi, K.; Xu, W.; Siebecker, M.; Wang, Y.; Phillips, B.; Sparks, D. Environ. Sci. Technol. 2012, 46, 11670.
[50] Yao, W.; Yu, S.; Wang, J.; Zou, Y.; Lu, S.; Ai, Y.; Alharbi, N. S.; Alsaedi, A.; Hayat, T.; Wang, X. Chem. Eng. J. 2017, 307, 476.
[51] Hu, Y.; Wang, X.; Zou, Y.; Wen, T.; Wang, X.; Alsaedi, A.; Hayat, T.; Wang, X. Chem. Eng. J. 2017, 316, 419.
[52] Li, Y.; Wang, J.; Li, Z.; Liu, Q.; Liu, J.; Liu, L.; Zhang, X.; Yu, J. Chem. Eng. J. 2013, 218, 295.
[53] Asiabi, H.; Yamini, Y.; Shamsayei, M. J. Hazad. Mater. 2017, 339, 239.
[54] Wu, X.; Tan, X.; Yang, S.; Wen, T.; Guo, H.; Wang, X.; Xu, A. Water Res. 2013, 47, 4159.
[55] Wang, J.; Wang, X.; Tan, L.; Chen, Y.; Hayat, T.; Hu, J.; Alsaedi, A.; Ahmad, B.; Guo, W.; Wang, X. Chem. Eng. J. 2016, 297, 106.
[56] Zou, Y.; Wang, X.; Ai, Y.; Liu, Y.; Li, J.; Ji, Y.; Wang, X. Environ. Sci. Technol. 2016, 50, 3658.
[57] Wang, R. X.; Wen, T.; Wu, X. L.; Xu, A. W. RSC Adv. 2014, 4, 21802.
[58] Zou, Y.; Wang, X.; Wu, F.; Yu, S.; Hu, Y.; Song, W.; Liu, Y.; Wang, H.; Hayat, T.; Wang, X. ACS Sustain. Chem. Eng. 2016, 5, 1173.
[59] Wei, M.; Shi, Z.; Evans, D. G.; Duan, X. J. Mater. Chem. 2006, 16, 2102.
[60] Yu, S.; Wang, X.; Chen, Z.; Wang, J.; Wang, S.; Hayat, T.; Wang, X. J. Hazard. Mater. 2017, 321, 111.
[61] Wen, T.; Wu, X.; Tan, X.; Wang, X.; Xu, A. ACS Appl. Mater. Inter. 2013, 5, 3304.
[62] Qiu, H.; Cui, B.; Li, G.; Yang, J.; Peng, H.; Wang, Y.; Li, N.; Gao, R.; Chang, Z.; Wang, Y. J. Phys. Chem. C 2014, 118, 14929.
[63] Cerff, M.; Morweiser, M.; Dillschneider, R.; Michel, A.; Menzel, K.; Posten, C. Bioresource Technol. 2012, 118, 289.
[64] Yang, X. Y.; Gong, Z. Q.; Zheng, Y. J.; Liu, F. L. J. Functional Mater. 2005, 36, 667. (杨喜云, 龚竹青, 郑雅杰, 刘丰良, 功能材料, 2005, 36, 667.)
[65] Luo, J.; Zhang, G.; Xie, N.; Wang, T.; Gu, Y.; Gong, S.; Wang, C. A. IEEE Photonic. Tech. L. 2015, 27, 998.
[66] Yang, D.; Wang, X.; Wang, N.; Zhao, G.; Song, G.; Chen, D.; Liang, Y.; Wen, T.; Wang, H.; Hayat, T. J. Clean. Prod. 2018, 172, 2033.
[67] Sheng, G.; Tang, Y.; Linghu, W.; Wang, L.; Li, J.; Li, H.; Wang, X.; Huang, Y. Appl. Catal. B-Environ. 2016, 192, 268.
[68] Zou, Y.; Liu, Y.; Wang, X.; Sheng, G.; Wang, S.; Ai, Y.; Ji, Y.; Liu, Y.; Hayat, T.; Wang, X. ACS Sustain. Chem. Eng. 2017, 5, 3583.
[69] Yu, S.; Wang, X.; Tan, X.; Wang, X. Inorg. Chem. Front. 2015, 2, 593.
[70] Sun, Y.; Yang, S.; Chen, Y.; Ding, C.; Cheng, W.; Wang, X. Environ. Sci. Technol. 2015, 49, 4255.
[71] Wang, X.; Fan, Q.; Yu, S.; Chen, Z.; Ai, Y.; Sun, Y.; Hobiny, A.; Alsaedi, A.; Wang, X. Chem. Eng. J. 2016, 287, 448.
[72] Gu, P. C.; Song, S.; Zhang, S.; Wei, B. B.; Wen, T.; Wang, X. K. Acta Chim. Sinica 2018, 76, 701. (顾鹏程, 宋爽, 张塞, 韦犇犇, 文涛, 王祥科, 化学学报, 2018, 76, 701.)
[73] Zhang, C. L.; Li, X.; Chen, Z. S.; Wen, T.; Huang, S. Y.; Hayat, T.; Alsaedi, A.; Wang, X. K. Sci. China Chem. 2018, 61, 281.
[74] Yao, W.; Wang, X. X.; Liang, Y,; Yu, S. J.; Gu, P. C.; Sun, Y. B.; Xu, C.; Chen, J.; Hayat, T.; Alsaedi, A.; Wang, X. K. Chem. Eng. J. 2018, 332, 775.
[75] Tan, X.; Ren, X.; Chen, C.; Wang, X. Trends. Anal. Chem. 2014, 61, 107.
[76] Yao, W.; Wu, Y.; Pang, H.; Wang, X.; Yu, S.; Wang, X. Sci. China Chem. 2018, 61, 812.
[77] Müller, K.; Foerstendorf, H.; Brendler, V.; Rossberg, A.; Stolze, K.; Gröschel, A. Chem. Geol. 2013, 357, 75.
[78] Jin, J.; Sun, K.; Liu, W.; Li, S. W.; Peng, X. Q.; Yang, Y.; Han, L. F.; Du, Z. W.; Wang, X. K. Environ. Pollut. 2018, 236, 745.
[79] Sheng, G. D.; Huang, C. C.; Chen, G. H.; Sheng, J.; Ren, X. M.; Hu, B. W.; Ma, J. Y.; Wang, X. K.; Huang, Y. Y.; Alsaedi, A.; Hayat, T. Environ. Pollut. 2018, 233, 125.
[80] Chen, H. J.; Chen, Z.; Zhao, G. X.; Zhang, Z. B.; Xu, C.; Liu, Y. H.; Chen, J.; Zhuang, L.; Hayat, T.; Wang, X. K. J. Hazard. Mater. 2018, 347, 66.
[81] Yu, S.; Yin, L.; Pang, H.; Wu, Y.; Wang, X.; Zhang, P.; Hu, B.; Chen, Z.; Wang, X. Chem. Eng. J. 2018, 352, 360.
[82] Zhao, J.; Chen, J.; Xu, S.; Shao, M.; Zhang, Q.; Wei, F.; Ma, J.; Wei, M.; Evans, D.; Duan, X. Adv. Funct. Mater. 2014, 24, 2938.
[83] Sheng, G.; Alsaedi, A.; Shammakh, W.; Monaquel, S.; Sheng, J.; Wang, X.; Li, H.; Huang, Y. Carbon 2016, 99, 123.
[84] Zhao, G. X.; Huang, X. B.; Tang, Z. W.; Huang, Q. F.; Niu, F. L.; Wang, X. K. Poly. Chem. 2018, 9, 3562.
[85] Shao, D.; Li, J.; Tan, X.; Yang, Z.; Okuno, K.; Oya, Y. J. Nucl. Mater. 2015, 457, 118.
[86] Liang, Y.; Gu, P. C.; Yao, W.; Yu, S. J.; Wang, J.; Wang, X. K. Prog. Chem. 2017, 29, 1062. (梁宇, 顾鹏程, 姚文, 于淑君, 王建, 王祥科, 化学进展, 2017, 29, 1062.)
[87] Xu, H.; Li, G.; Li, J.; Chen, C.; Ren, X. J. Mol. Liq. 2016, 213, 58.
[88] Li, J.; Wang, X. X.; Zhao, G. X.; Chen, C. L.; Chai, Z. F.; Alsaedi, A.; Hayat, T.; Wang, X. K. Chem. Soc. Rev. 2018, 47, 2322.
[89] Li, X.; Liu, Y.; Zhang, C. L.; Wen, T.; Zhuang, L.; Wang, X. X.; Song, G.; Chen, D. Y.; Ai, Y. J.; Hayat, T.; Wang, X. K. Chem. Eng. J. 2018, 336, 241.
[90] Song, W. C.; Wang, X. X.; Chen, Z. S.; Sheng, G. D.; Hayat, T.; Wang, X. K.; Sun, Y. B. Environ. Pollut. 2018, 237, 228.
[91] Yu, S. J.; Wang, X. X.; Yang, S. T.; Sheng, G. D.; Alsaedi, A.; Hayat, T.; Wang, X. K. Sci. China Chem. 2017, 60, 170.
[92] Sheng, G.; Yang, P.; Tang, Y.; Hu, Q.; Li, H.; Ren, X.; Hu, B.; Wang, X.; Huang, Y. Appl. Catal. B-Environ. 2016, 193, 189.
[93] Wu, Y. H.; Pang, H. W.; Yao, W.; Wang, X. X.; Yu, S. J.; Yu, Z. M.; Wang, X. K. Sci. Bull. 2018, 63, 831.
/
〈 |
|
〉 |