综述

C―F…H―X相互作用在有机反应中的影响

  • 郝永佳 ,
  • 余金生 ,
  • 周英 ,
  • 王欣 ,
  • 周剑
展开
  • a. 贵阳中医学院药学院 贵阳 550025;
    b. 绿色化学与化工过程绿色化上海市重点实验室 上海分子治疗与新药创制工程技术研究中心 华东师范大学化学与分子工程学院 上海 200062;
    c. 金属有机化学国家重点实验室 中国科学院上海有机化学研究所 上海 200032;
    d. 四川大学化学学院 成都 610064
郝永佳,男,汉族,1987年生.2016年6月博士毕业于华东理工大学,化学生物技术与工程专业.2018年加入贵阳中医学院药学院,研究方向为(天然)药物化学、药物合成,目前主要从事生物活性分子的设计、合成及活性研究工作;余金生,男,1988年生于江西九江.2011年本科毕业于江西师范大学,随后加入华东师范大学周剑教授课题组,并于2016年获得有机化学博士学位.2017年初至今在日本微生物化学研究所Shibasaki教授小组进行JSPS博士后研究,主要从事重要手性砌块的不对称催化合成研究;周英,博士,贵阳中医学院药学院教授,博士生导师,教育部新世纪优秀人才,西南药食两用资源开发利用技术国家地方联合工程中心主任.1998年博士毕业于北京大学医学部(原北京医科大学),2003年至2005年在美国肯塔基大学医学中心做博士后研究.主要从事中药民族药研究以及药物优势骨架导向的多样性原创小分子化合物设计、合成及其生物活性研究.

收稿日期: 2018-08-31

  网络出版日期: 2018-10-18

基金资助

项目受国家自然科学基金(Nos.21472049,81660576)与贵州省药食同源植物资源开发工程技术研究中心(黔科合G字[2015]4001号)资助.

Influence of C—F…H—X Interactions on Organic Reactions

  • Hao Yong-Jia ,
  • Yu Jin-Sheng ,
  • Zhou Ying ,
  • Wang Xin ,
  • Zhou Jian
Expand
  • a. College of Pharmacy, Guiyang University of Chinese Medicine, Guiyang 550025;
    b. Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062;
    c. State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032;
    d. College of Chemistry, Sichuan University, Chengdu 610064

Received date: 2018-08-31

  Online published: 2018-10-18

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21472049, 81660576) and Guizhou engineering research center for the exploitation and utilization technology of medicine and food dual-use resources.

摘要

氢键相互作用在分子间或者分子内均广泛存在,并且对有机反应的选择性和活性具有深远影响.有机化合物中的N和O原子与不同氢键给体H―X的氢键作用已得到了广泛研究,并被巧妙地用于设计开发新的催化剂和新反应,但电负性最大的氟元素所形成的C―F键与氢键给体之间的C―F…H―X相互作用对有机反应的影响却研究很少.2011年,我们首次在酮亚胺的Strecker反应中观察到强烈的氟效应,并提出可能是源于C―F…H―X相互作用对反应的活性和选择性的影响.随后,这种弱相互作用在更多的有机反应中被观察到,并被认为对有机化学反应可能存在显著的影响,甚至还能通过理性设计来实现高反应活性和选择性.本综述将介绍底物与催化剂或溶剂之间,底物与底物之间,以及反应过渡态中形成的C―F…H―X氢键相互作用对有机反应的影响,旨在为从事有机合成和有机氟化学的研究人员提供参考和启示,从而有助于新反应和新型手性催化剂的设计开发.

本文引用格式

郝永佳 , 余金生 , 周英 , 王欣 , 周剑 . C―F…H―X相互作用在有机反应中的影响[J]. 化学学报, 2018 , 76(12) : 925 -939 . DOI: 10.6023/A18080360

Abstract

Although the debate on whether or not C―F bonds can function as H-bond acceptors lasted for tens of years, dating back to 1939 when Pauling pointed out in The Nature of the Chemical Bond that C-F bonds do not have significant power to act as proton acceptors in the formation of hydrogen bonds, more and more evidences support the existence of C―F…H―X interactions, and in particular, C―F…H―O and C―F…H―N interactions cannot be ignored.Because the sum of the van der Waals radii of hydrogen and fluorine atoms is reported to be around as 2.55 Å, C―F…H―X interactions may exist if the calculated distance of F…H is less than 2.50 Å. Strong C―F…H―X interactions may occur if the calculated distance is less than 2.30 Å and the F…H―X angle is greater than 120°.In 2011, we observed strong fluorine effects on the Strecker reaction of ketimines: while Schreiner's thiourea could catalyze the Strecker reaction of acetophenone derived ketimine using TMSCN, it was unable to mediate the corresponding reaction of analogy α-CF3 or α-CF2H ketimines. Theoretical calculations revealed that the C―F…H―N interactions between the C―F bond of fluorinated ketimines and thiourea played the key role. This is the first report on the influence of such subtle interactions on organic reactions. Since then, reports from our and other groups revealed various types of C―F…H―X interactions that may be present in the reaction course, to strongly influence the reactivity and selectivity. Although successful examples are still limited, these achievements have suggested that C―F…H―X interactions may exist between the substrate and the catalyst; the substrate and the solvent; different reaction partners, or engender in the transition state with the reaction intermediate. Importantly, known examples demonstrate it possible to harness C―F…H―X interactions to tune reactivity and/or selectivity, which are useful for new reaction development, as well as for the design of new catalysts. To provide reference and inspiration for researchers engaged in organic synthesis, especially the organic fluorine chemistry, we summarize in this review the recent advances in the study of the influences of C―F…H―X interactions on organic reactions.

参考文献

[1] Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. J. Pure Appl. Chem. 2011, 83, 1619.
[2] Desiraju, G. R. Angew. Chem., Int. Ed. 2011, 50, 52.
[3] Latimer, W. M.; Rodebush, W. H. J. Am. Chem. Soc. 1920, 42, 1419.
[4] Robertson, J. M. Nature 1935, 136, 755.
[5] Taylor, R.; Kennard, O. J. Am. Chem. Soc. 1982, 104, 5063.
[6] Katz, B. A.; Spencer, J. R.; Elrod, K.; Luong, C.; Mackman, R. L.; Rice, M.; Sprengeler, P. A.; Allen, D.; Janc, J. J. Am. Chem. Soc. 2002, 124, 11657.
[7] (a) Bondar, A. N.; White, S. H. BBA-Biomembranes 2012, 1818, 942.
(b) Zhang, J.; Chen, P. C.; Yuan, B. K.; Ji, W.; Cheng, Z. H.; Qiu, X. H. Science 2013, 342, 611.
[8] For the recent works on H-bonding interaction from Chinese research group:(a) Wang, M.; Cheng, C. Q.; Song, J. T.; Wang, J.; Zhou, X. G.; Xiang, H. F.; Liu, J. Chin. J. Chem. 2018, 36, 698.
(b) Zhu, X. W.; Cui, X. Y.; Cai, W. S.; Shao, X. G. Acta Chim. Sinica 2018, 76, 298(in Chinese). (朱雪薇, 崔晓宇, 蔡文生, 邵学广, 化学学报, 2018, 76, 298.).
(c) Sun, G. J.; Nie, C. B.; Zhao, X.; Li, Z. T. Chin. J. Org. Chem. 2017, 37, 1757(in Chinese). (孙广军, 聂承斌, 赵新, 黎占亭, 有机化学, 2017, 37, 1757.)
[9] Desiraju, G. R. Acc. Chem. Res. 1991, 24, 290.
[10] Jeffrey, G. A. Cryst. Rev. 1995, 4, 213.
[11] For a review on H-bond donor catalysis, see:Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5713. For bifucntional catalysis with H-bond donors, see amide based organocatalysts:(a) Liu, X. H.; Lin, L. L.; Feng, X. M. Chem. Commun. 2009, 41, 6145; with enamine catalysis:(b) Kano, T.; Maruoka, K. Chem. Commun. 2008, 43, 5465; with tertiary phosphine catalysis:(c) Wei, Y.; Shi, M. Acc. Chem. Res. 2010, 43, 1005;
(d) Xu, L. W. ChemCatChem 2013, 5, 2775;
(e) Wang, S. X.; Han, X. Y.; Zhong, F. R.; Wang, Y. Q.; Lu, Y. X. Synlett 2011, 19, 2766; with NHCs catalysis:(f) Grossmann, A.; Enders, D. Angew. Chem., Int. Ed. 2012, 51, 314;
(g) Sun, L. H.; Liang, Z. Q.; Jia, W. Q.; Ye, S. Angew. Chem., Int. Ed., 2013, 52, 5803;
(h) Lv, H.; Jia, W. Q.; Sun, L. H.; Ye, S. Angew. Chem., Int. Ed. 2013, 52, 8607; with PTC catalysis:(i) Novacek, J.; Waser, M. Eur. J. Org. Chem. 2013, 4, 637;
(j) Shirakawa, S.; Maruoka, K. Tetrahedron Lett. 2014, 55, 3833; with metal catalysis:(k) Song, J.; Guo, C.; Chen, P. H.; Yu, J.; Luo, S. W.; Gong, L. Z. Chem. Eur. J. 2011, 17, 7786;
(l) Lang, K.; Park, J.; Hong, S. Angew. Chem., Int. Ed. 2012, 51, 1620. with phosphoramide:(m) Ding, M.; Zhou, F.; Liu, Y. L.; Wang, C. H.; Zhao, X. L.; Zhou, J. Chem. Sci. 2011, 2, 2035.
(n) Gao, W. M.; Yu, J. S.; Zhao, Y. L.; Liu, Y. L.; Zhou, F.; Wu, H. H.; Zhou, J. Chem. Commun. 2014, 50, 15179.
[12] O'Hagan, D. Chem. Soc. Rev. 2008, 37, 308.
[13] Howard, J. A. K.; Hoy, V. J.; O'Hagan, D.; Smith, G. T. Tetrahedron 1996, 52, 12613.
[14] Pauling, L. The Nature of the Chemical Bond, Cornell University Press, Ithaca, NY, 1939, p. 28.
[15] Dunitz, J. D.; Taylor, R. Chem. Eur. J. 1997, 3, 89.
[16] Shimoni, L.; Glusker, J. P. Struct. Chem. 1994, 5, 383.
[17] Thalladi, V. R.; Weiss, H. C.; Bla1ser, D.; Boese, R.; Nangia, A.; Desiraju, G. R. J. Am. Chem. Soc. 1998, 120, 8702.
[18] Thakur, T. S.; Kirchner, M. T.; Bläser, D.; Boese, R.; Desiraju, G. R. CrystEngComm 2010, 12, 2079.
[19] Anzahaee, M. Y.; Watts, J. K.; Alla, N. R.; Nicholson, A. W.; Damha, M. J. J. Am. Chem. Soc. 2011, 133, 728.
[20] Schneider, H. J. Chem. Sci. 2012, 3, 1381.
[21] Zhao, X.; Wang, X. Z.; Jiang, X. K.; Chen, Y. Q.; Li, Z. T.; Chen, G. J. J. Am. Chem. Soc. 2003, 125, 15128.
[22] Liu, Y. L.; Shi, T. D.; Zhou, F.; Zhao, X. L.; Wang, X.; Zhou, J. Org. Lett. 2011, 13, 3826.
[23] (a) Pesenti, C.; Viani, F. ChemBioChem 2004, 5, 590.
(b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(c) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359.
(d) Wang, J.; Liu, H. Chin. J. Org. Chem. 2011, 31, 1785(in Chinese). (王江, 柳红, 有机化学, 2011, 31, 1785.)
(e) Ojima, I. J. Org. Chem. 2014, 44, 6358.
(f) Liu, Y. L.; Yu, J. S.; Zhou, J. Asian J. Org. Chem. 2013, 2, 194.
(g) Lin, J. H.; Xiao, J. C. Tetrahedron Lett. 2014, 55, 6147.
(h) Ni, C. F.; Zhu, L. G.; Hu, J. B. Acta Chim. Sinica 2015, 73, 90(in Chinese). (倪传法, 朱林桂, 胡金波, 化学学报, 2015, 73, 90.)
(i) Champagne, P. A.; Desroches, J.; Hamel, J. D.; Vandamme, M.; Paquin, J. F. Chem. Rev. 2015, 115, 9073.
(j) Zhang, J.; Jin, C. F.; Zhang, Y. J. Chin. J. Org. Chem. 2014, 34, 662(in Chinese). (张霁, 金传飞, 张英俊, 有机化学, 2014, 34, 662.)
(k) Swallow, S. Progress in Medicinal Chemistry 2015, 54, 65.
(l) Gillis, E. P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58, 8315.
(m) Wang, G. M.; Zhu, Z. D.; Chen, Z. Q.; Xu, Z. J.; Zhu, W. L. Acta Pharmaceutica Sinica 2018, 53, 701(in Chinese). (王桂敏, 朱正诞, 陈照强, 徐志建, 朱维良, 药学学报, 2018, 53, 701.)
(n) Ni, C. F.; Hu, J. B. Chem. Soc. Rev. 2016, 45, 5441.
(o) Cahard, D.; Bizet, V. Chem. Soc. Rev. 2014, 43, 135.
(p) Fustero, S.; Fuentes, A. S.; Barrio, P.; Haufe, G. Chem. Rev. 2015, 115, 871.
[24] Champagne, P. A.; Desroches, J.; Paquin, J. F. Synthesis 2014, 47, 306.
[25] Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012.
[26] Jin, L. M.; Xu, X.; Lu, H. J.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem., Int. Ed. 2013, 52, 5309.
[27] Yuan, H. N.; Wang, S.; Nie, J.; Meng, W.; Yao, Q.; Ma, J. A. Angew. Chem., Int. Ed. 2013, 52, 3869.
[28] Lee, K. A.; Silverio, D. L.; Torker, S.; Robbins, D. W.; Haeffner, F.; Mei, F. W.; Hoveyda, A. H. Nat. Chem. 2016, 8, 768.
[29] (a) Liu, Y. L.; Zeng, X. P.; Zhou, J. Chem. Asian J. 2012, 7, 1759.
(b) Liu, H. X.; Tao, Z.; Xie, Q.; Zhou, J.; Wang, X. Comput. Theor. Chem. 2018, 1142, 57.
(c) Liu, Y. L.; Zhou, F.; Cao, J. J.; Ji, C. B.; Ding, M.; Zhou, J. Org. Biomol. Chem. 2010, 8, 3847.
(d) Ji, C. B.; Cao, Z. Y.; Wang, X.; Wu, D. Y.; Zhou, J. Chem. Asian J. 2013, 8, 877.
[30] For the related proton-transfer process, see:(a) Xia, Y. Z.; Liang, Y.; Chen, Y. Y.; Wang, M.; Jiao, L.; Huang, F.; Liu, S.; Li, Y. H.; Yu, Z. X. J. Am. Chem. Soc. 2007, 129, 3470.
(b) Shi, F. Q.; Li, X.; Xia, Y. Z.; Zhang, L. M.; Yu, Z. X. J. Am. Chem. Soc. 2007, 129, 15503.
(c) Li, X.; Ye, S. Y.; He, C.; Yu, Z. X. Eur. J. Org. Chem. 2008, 25, 4296.
[31] Champagne, P. A.; Pomarole, J.; Thérien, M. È.; Benhassine, Y.; Beaulieu, S.; Legault, C. Y.; Paquin, J. F. Org. Lett. 2013, 15, 2210.
[32] Champagne, P. A.; Benhassine, Y.; Desroches, J.; Paquin, J. F. Angew. Chem., Int. Ed. 2014, 53, 13835.
[33] Rosenberg, R. E. J. Phys. Chem. A 2012, 116, 10842.
[34] Dalvit, C.; Invernizzi, C.; Vulpetti, A. Chem. Eur. J. 2014, 20, 11058.
[35] For our efforts in selective fluoroalkylation using fluorinated enol silyl ethers, see:(a) Liu, Y. L.; Zhou, J. Chem. Commun. 2012, 48, 1919.
(b) Liu, Y. L.; Zhou, J. Acta Chim. Sinica 2012, 70, 1451(in Chinese). (刘运林, 周剑, 化学学报, 2012, 70, 1451.)
(c) Liu, Y. L.; Liao, F. M.; Niu, Y. F.; Zhao, X. L.; Zhou, J. Org. Chem. Front. 2014, 1, 742.
(d) Liao, F. M.; Liu, Y. L.; Yu, J. S.; Zhou, F.; Zhou, J. Org. Biomol. Chem. 2015, 13, 8906.
(e) Yu, J. S.; Zhou, J. Org. Biomol. Chem. 2015, 13, 10968.
(f) Yu, J. S.; Liao, F. M.; Gao, W. M.; Liao, K.; Zuo, R. L.; Zhou, J. Angew. Chem., Int. Ed. 2015, 54, 7381.
(g) Yu, J. S.; Zhou, J. Org. Chem. Front. 2016, 3, 298.
(h) Zeng, X. P.; Zhou, J. J. Am. Chem. Soc. 2016, 138, 8730.
(i) Liao, F. M.; Cao, Z. Y.; Yu, J. S.; Zhou, J. Angew. Chem., Int. Ed. 2017, 56, 2459.
(j) Hu, X. S.; Du, Y.; Yu, J. S.; Liao, F. M.; Ding, P. G.; Zhou, J. Synlett 2017, 28, 2194.
(k) Liao, F. M.; Gao, X. T.; Hu, X. S.; Xie, S. L.; Yu, J. S.; Zhou, J. Sci. Bull. 2017, 62, 1504.
(l) Liao, F. M.; Du, Y.; Zhou, F.; Zhou, J. Acta Chim. Sinica 2018, 76, DOI:10.6023/A18060238(in Chinese). (廖富民, 杜溢, 周锋, 周剑, 化学学报, 2018, 76, DOI:10.6023/A18060238).
[36] Yu, J. S.; Liu, Y. L.; Tang, J.; Wang, X.; Zhou, J. Angew. Chem., Int. Ed. 2014, 53, 9512.
[37] For the use of chiral Lewis base to activate silyl reagents, see:(a) Tian, S. K.; Deng, L. J. Am. Chem. Soc. 2001, 123, 6195.
(b) Tian, S. K.; Hong, R.; Deng, L. J. Am. Chem. Soc. 2003, 125, 9900.
(c) Fuerst, D. E.; Jacobsen, E. N. J. Am. Chem. Soc. 2005, 127, 8964.
(d) Wang, J.; Hu, X. L.; Jiang, J.; Gou, S. H.; Huang, X.; Liu, X. H.; Feng, X. M. Angew. Chem., Int. Ed. 2007, 46, 8468.
(e) Wang, J.; Wang, W. T.; Li, W.; Hu, X. L.; Shen, K.; Tan, C.; Liu, X. H.; Feng, X. M. Chem. Eur. J. 2009, 15, 11642.
(f) Liu, Y. L.; Zhou, J. Chem. Commun. 2013, 49, 4421.
(g) Zhao, Y. L.; Cao, Z. Y.; Zeng, X. P.; Shi, J. M.; Yu, Y. H.; Zhou, J. Chem. Commun. 2016, 52, 3943. For a review:Liu, Y. L.; Zhou, J. Synthesis 2015, 47, 1210.
[38] Aronoff, M. R.; Gold, B.; Raines, R. T. Tetrahedron Lett. 2016, 57, 2347.
[39] Aronoff, M. R.; Gold, B.; Raines, R. T. Org. Lett. 2016, 18, 1538.
[40] Lou, H. Q.; Wang, Y. T.; Jin, E. Z.; Lin, X. F. J. Org. Chem. 2016, 81, 2019.
[41] Liu, Y. B.; Hu, L. R.; Chen, H.; Du, H. F. Chem. Eur. J. 2015, 21, 3495.
[42] (a) Wang, X. M.; Han, Z. B.; Wang, Z.; Ding, K. L. Angew. Chem., Int. Ed. 2012, 51, 936.
(b) Wang, X. M.; Meng, F. Y.; Wang, Y.; Han, Z. B.; Chen, Y. J.; Liu, L.; Wang, Z.; Ding, K. L. Angew. Chem., Int. Ed. 2012, 51, 9276.
[43] (a) Cao, Z. Y.; Wang, X. M.; Tan, C.; Zhao, X. L.; Zhou, J.; Ding, K. L. J. Am. Chem. Soc. 2013, 135, 8197. Also see:(b) Cao, Z. Y.; Zhou, F.; Zhou, J. Acc. Chem. Res. 2018, 61, 1443.
(c) Cao, Z. Y.; Zhou, J. Org. Chem. Front. 2015, 2, 849.
[44] Cao, Z. Y.; Wang, W. M.; Liao, K.; Wang, X.; Zhou, J.; Ma, J. Org. Chem. Front. 2018, 5, 2960.
[45] We also reported a Hg-catalyzed cyclopropanation of diazooxindoles with alkenes, and found that the N-methyl group of diazooxindole had no negative influence on enantioselectivity, possibly because the reaction solvent is not fluorinated solvents, see:Cao, Z. Y.; Zhou, F.; Yu, Y. H.; Zhou, J. Org. Lett. 2013, 15, 42.
[46] (a) Ess, D. H.; Houk, K. N. J. Am. Chem. Soc. 2007, 129, 10646.
(b) van Zeist, W. J.; Bickelhaupt, F. M. Org. Biomol. Chem. 2010, 8, 3118.
(c) Bickelhaupt, F. M.; Houk, K. N. Angew. Chem., Int. Ed. 2017, 56, 10070.

文章导航

/