基于二氧化硅纳米颗粒的三重态-三重态湮灭上转换研究
收稿日期: 2018-09-06
网络出版日期: 2018-10-23
基金资助
国家自然科学基金(Nos.21871280,21474124)、科技部(Nos.2014CB239402和2017YFA0206903)和中国科学院战略性先导科技专项(B类)(XDB17000000)资助项目.
Triplet-Triplet Annihilation Upconversion Based on Silica Nanoparticles
Received date: 2018-09-06
Online published: 2018-10-23
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21871280, 21474124), Ministry of Science and Technology (Nos. 2014CB239402 and 2017YFA0206903) and Chinese Academy of Sciences Strategic Pilot Science and Technology Project (Class B) (XDB17000000).
以氟化的四苯基卟啉铂为光敏剂,硅氧烷衍生化的9,10-二苯基蒽为发光体构筑了基于三重态-三重态湮灭机制的上转换体系.采用紫外可见分光光度计和荧光光谱仪研究了其在二氯甲烷溶液中的上转换性能,确定了光敏剂和发光体的最佳比例为1:40.在此比例下,以胶束模板法构筑了尺寸均一,能在水中稳定的上转换二氧化硅纳米颗粒,通过透射电子显微镜(TEM)和动态光散射仪(DLS)表征了其形貌和尺寸(TEM统计平均直径为15.5 nm,平均水合直径为22.5 nm);当以532 nm的激光作为激发光源时,实现了水中的上转换发射,上转换发光寿命为12 μs,上转换量子效率为0.8%.
何通 , 杨晓峰 , 陈玉哲 , 佟振合 , 吴骊珠 . 基于二氧化硅纳米颗粒的三重态-三重态湮灭上转换研究[J]. 化学学报, 2019 , 77(1) : 41 -46 . DOI: 10.6023/A18090374
Photon upconversion based on triplet-triplet annihilation (TTA) composed of organic photosensitizer and emitter, has attracted widespread attention due to its unique photophysical properties and enormous applications in photovoltaic cells, photocatalysis, bio-imaging, and photodynamic therapy. Particularly, in biological systems, long-wavelength excitation light can efficiently reduce the interference of background fluorescence and increase the penetration depth of biological tissue, thereby avoiding the use of high-energy excitation light and reducing the damage to biological samples. However, most of the upconversion dyes based on TTA mechanism are water-insoluble organic compounds, which greatly limits their application in the biological field. Herein we synthesized a TTA upconversion system based on silica nanoparticles, which can achieve upconversion emission in water. Specifically, the photosensitizer (fluorinated tetraphenylporphyrin platinum) and the emitter (siloxane derivatized 9,10-diphenylanthracene) for photon upconversion were designed and synthesized, whose upconversion performance in dichloromethane solution was firstly studied by UV-Vis spectrophotometer and fluorescence spectrometer. Clear blue upconversion emission from emitter could be observed when the photosensitizer was excited by 532 nm laser. The triplet energy transfer efficiency between photosensitizer and emitter is 60%. The optimal ratio of photosensitizer to emitter was 1:40. Based on this ratio, the stable upconversion silica nanoparticles with uniform size in water were constructed by micellar template method. The average diameter characterized by transmission electron microscopy (TEM) is 15.5 nm and the hydration diameter characterized by dynamic light scattering (DLS) is 22.5 nm. When the 532 nm laser is used as the excitation source, the upconversion emission in water was achieved. Their upconversion luminescence lifetime and quantum yield are 12 μs and 0.8%, respectively. Finally, the upconversion mechanism in silica nanoparticles was studied. The upconversion intensities in silica nanoparticles show quadratic and first-order dependences on the incident intensity in the low and high excitation intensity ranges respectively, proving a triplet-triplet annihilation mechanism.
[1] (a) Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Y. Chem. Rev. 2015, 115, 395.
(b) Yanai, N.; Kimizuka, N. Chem. Commun. 2016, 52, 5354.
(c) Duan, C. C.; Liang, L. E.; Li, L.; Zhang, R.; Xu, Z. P. J. Mater. Chem. B 2018, 6, 192.
(d) Fan, C. Y.; Wu, W. H.; Yang, C. Chin. J. Org. Chem. 2018, 38, 1377. (范春英, 伍晚花, 杨成, 有机化学, 2018, 38, 1377.)
(e) Li, L.; Zeng, Y.; Yu, T. J.; Chen, J. P.; Yang, G. Q.; Li, Y. ChemSusChem 2017, 10, 4610.
(f) Xun, Z. Q.; Zeng, Y.; Chen, J. P.; Yu, T. J.; Zhang, X. H.; Yang, G. Q.; Li, Y. Chem.-Eur. J. 2016, 22, 8654.
[2] Parker, C. A.; Hatchard, C. G. Proc. R. Soc. London, Ser. A 1962, 269, 574.
[3] Parker, C. A. Proc. R. Soc. London, Ser. A 1963, 276, 125.
[4] (a) Huang, Q. M.; Yu, H.; Zhang, X. Q.; Cao, W. B.; Yu, J. C. Acta Chim. Sinica 2016, 74, 191. (黄清明, 俞瀚, 张新奇, 曹文兵, 俞建长, 化学学报, 2016, 74, 191.)
(b) Huang, C. B.; Ren, A. X. Acta Chim. Sinica 2007, 65, 2765. (黄池宝, 任安祥, 化学学报, 2007, 65, 2765.)
[5] Fan, C. Y.; Wu, W. H.; Chruma, J. J.; Zhao, J. Z.; Yang, C. J. Am. Chem. Soc. 2016, 138, 15405.
[6] (a) Wang, Z. J.; Zhao, J. Z.; Barbon, A.; Toffoletti, A.; Liu, Y.; An, Y. L.; Xu, L.; Karatay, A.; Yaglioglu, H. G.; Yildiz, E. A.; Hayvali, M. J. Am. Chem. Soc. 2017, 139, 23.
(b) Cui, X. N.; Zhao, J. Z.; Zhou, Y. H.; Ma, J.; Zhao, Y. L. J. Am. Chem. Soc. 2014, 136, 9256.
(c) Zhang, C. S.; Zhao, J. Z.; Wu, S.; Wang, Z. L.; Wu, W. H.; Ma, J.; Guo, S.; Huang, L. J. Am. Chem. Soc. 2013, 135, 10566.
(d) Wu, W. H.; Guo, S.; Zhao, J. Z. Sci. China Chem. 2012, 42, 1381. (伍晚花, 郭颂, 赵建章, 中国科学:化学, 2012, 42, 1381.)
(e) Ma, L. H.; Guo, S.; Zhao, J. Z.; Guo, H. M. Chin. Sci. Bull. 2014, 59, 1655. (马丽花, 郭颂, 赵建章, 郭慧敏, 科学通报, 2014, 59, 1655.)
(f) Wan, S. G.; Lin, J. X.; Su, H. M.; Dai, J. F.; Lu, W. Chem. Commun. 2018, 54, 3907.
[7] Khnayzer, R. S.; Blumhoff, J.; Harrington, J. A.; Haefele, A.; Deng, F.; Castellano, F. Chem. Commun. 2012, 48, 209.
[8] Kwon, O. S.; Kim, J. H.; Cho, J. K.; Kim, J. H. ACS Appl. Mater. Interfaces 2017, 7, 318.
[9] Guo, C.; Li, M. G. Acta Chim. Sinica 2014, 72, 215. (郭畅, 李茂国, 化学学报, 2014, 72, 215.)
[10] Wang, C.; Cheng, L.; Liu, Z. Theranostics 2013, 3, 317.
[11] Wohnhaas, C.; Mailänder, V.; Dröge, M.; Filatov, M. A.; Busko, D.; Avlasevich, Y.; Baluschev, S.; Miteva, T.; Landfester, K.; Turshatov, A. Macromol. Biosci. 2013, 13, 1422.
[12] Haase, M.; Schäfer, H. Angew. Chem., Int. Ed. 2011, 50, 5808.
[13] Tanaka, K.; Inafuku, K.; Chujo, Y. Chem. Commun. 2010, 46, 4378.
[14] Turshatov, A.; Busko, D.; Baluschev, S.; Miteva, T.; Landfester, K. New J. Phys. 2011, 13, 083035.
[15] Monguzzi, A.; Frigoli, M.; Larpent, C.; Tubino, R.; Meinardi, F. Adv. Funct. Mater. 2012, 22, 139.
[16] Huo, Q. S.; Liu, J.; Wang, L. Q.; Jiang, Y. B. J. Am. Chem. Soc. 2006, 128, 6447.
[17] Sun, Y. H.; Zha, L. G. H.; Zhang, J. L.; Guan, C. X.; Zheng, L.; Li, W.; Qiao, J. J. Acta Chim. Sinica 2011, 69, 967. (孙艳华, 扎拉嘎胡, 张金利, 关丛笑, 郑琳, 李韡, 乔建军, 化学学报, 2011, 69, 967.)
[18] (a) Petrizza, L.; Collot, M.; Richert, L.; Mely, Y.; Prodib, L.; Klymchenko, A. S. RSC Adv. 2016, 6, 104164.
(b) Wang, C.; Chen, Y. Z.; Wu, D. Y. Chem. J. Chin. Univ. 2018, 39, 917. (王畅, 陈玉哲, 吴大勇, 高等学校化学学报, Chem. J. Chin. Univ. 2018, 39, 917.)
[19] Kwon, O. S.; Song, H. S.; Conde, J.; Kim, H. I.; Artzi, N.; Kim, J. H. ACS Nano 2016, 10, 1512.
[20] Huang, L.; Zhao, Y.; Zhang, H.; Huang, K.; Yang, J. Y.; Han, G. Angew. Chem. Int. Ed. 2017, 56, 14400.
[21] Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 69.
[22] Genovese, D.; Bonacchi, S.; Juris, R.; Montalti, M.; Prodi, L.; Rampazzo, E.; Zaccheroni, N. Angew. Chem., Int. Ed. 2013, 52, 5965.
/
〈 |
|
〉 |