钯配合物与手性方酰胺协同催化的乙烯基碳酸乙烯酯与醛的不对称脱羧环加成反应
收稿日期: 2018-07-20
网络出版日期: 2018-11-08
基金资助
项目受国家自然科学基金(No.21572130)资助.
Asymmetric Decarboxylative Cycloaddition of Vinylethylene Carbonates with Aldehydes by Cooperative Catalysis of Palladium Complex and Chiral Squaramide
Received date: 2018-07-20
Online published: 2018-11-08
Supported by
Project supported by the National Natural Science Foundation of China (No. 21572130).
Khan Ijaz , 李红芳 , 吴学 , 张勇健 . 钯配合物与手性方酰胺协同催化的乙烯基碳酸乙烯酯与醛的不对称脱羧环加成反应[J]. 化学学报, 2018 , 76(11) : 874 -877 . DOI: 10.6023/A18070291
Chiral tertiary alcohols are ubiquitous in medicinally relevant agents and biologically active natural products. Although some catalytic asymmetric approaches for the synthesis of chiral tertiary alcohols have been reported, the development of efficient methods for enantioselective construction of tertiary alcohols is still highly appealing. Most recently, we have developed Pd-catalyzed asymmetric decarboxylative cycloaddition of vinylethylene carbonates (VECs) with formaldehyde to construct tertiary alcohol derivatives. The reaction was catalyzed by the chiral palladium complex with a chiral phosphoramidite to afford methylene acetal protected tertiary vinylglycols in high efficiency. Since the pioneer works by Gong and Takemoto respectively for the allylic substitution under cooperative catalysis of palladium complex and chiral phase-transfer catalyst, the asymmetric allylic substitution synergistically catalyzed by transition metal and organocatalyst has recently attracted a great deal of attention. However, there have been no reports on the combination of transition-metal and squaramide for the allylic alkylation. In this communication, we will report the asymmetric decarboxylative cycloaddition of VECs with formaldehyde under cooperative catalytic system of achiral palladium complex and chiral squaramide. With combination of palladium complex in situ generated from Pd2(dba)3·CHCl3 (2.5 mol%) and achiral phosphine ligand L4 (10 mol%) and chiral squaramide OC2 (25 mol%) as cooperative catalysts, the reaction of VECs with paraformaldehyde (10 equiv.) proceeded smoothly to give desired tertiary alcohol derivatives in good yields (51%~65%) with moderate enantioselectivities (62%~79% ee). The reaction conditions are also suitable for the reaction of VEC with electronic deficient arylaldehydes to afford desired products in high yields with good enantioselectivities, although the catalytic system is less effective for the control of the diastereoselectivities. Although the enantioselectivity of the reaction is not significantly high, we firstly demonstrated that the chiral induction for the cycloaddition reaction could be achieved under the cooperative catalytic system of achiral palladium complex and chiral squaramide. The detail reaction mechanism and stereochemical outcome are currently underway, and will be reported in due course.
[1] For reviews, see:(a) Shibasaki, M.; Kanai, M. Chem. Rev. 2008, 108, 2853.
(b) Corey, E. J.; Guzman-Perez, A. Angew. Chem., Int. Ed. 1998, 37, 388.
[2] For reviews, see:(a) Kolb, H. C.; Sharpless, K. B. In Transition Metals for Organic Synthesis, 2nd ed., Eds.:Beller, M.; Bolm, C., WILEY-VCH, Weinheim, 2004, p. 275.
(b) Becker, H.; Sharpless, K. B. In Asymmetric Oxidation Reactions, Ed.:Katsuki, T., Oxford University Press, Oxford, 2001, p. 81.
[3] For reviews, see:(a) Wong, O. A.; Shi, Y. Chem. Rev. 2008, 108, 3958.
(b) Katsuki, T. Adv. Synth. Catal. 2002, 344, 131.
(c) Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis, 2nd ed., Ed.:Ojima, I., WILEY-VCH, New York, 2000, p. 231.
[4] For selected recent examples for catalytic asymmetric synthesis of tertiary alcohols, see:(a) Kim, J. H.; Coric, I.; Palumbo, C.; List, B. J. Am. Chem. Soc. 2015, 137, 1778.
(b) Shibatomi, K.; Kotozaki, M.; Sasaki, N.; Fujisawa, I.; Iwasa, S. Chem.-Eur. J. 2015, 21, 14095.
(c) Pulis, A. P.; Aggarwal, V. K. J. Am. Chem. Soc. 2012, 123, 7570.
(d) Russo, A.; Fusco, C. D.; Lattanzi, A. RSC Adv. 2012,
2, 385.
(e) Gourdet, B.; Lam, H. W. Angew. Chem., Int. Ed. 2010, 49, 8733.
(f) Schipper, D. J.; Rousseaux, S.; Fagnou, K. Angew. Chem., Int. Ed. 2009, 48, 8343.
(g) You, Z.; Hoveyda, A. H.; Snapper, M. L. Angew. Chem., Int. Ed. 2009, 48, 547.
(h) Checa, B.; Gálvez, E.; Parelló, R.; Sau, M.; Romea, P.; Urpí, F.; Font-Bardia, M.; Solans, X. Org. Lett. 2009, 11, 2193.
(i) Stymiest, J. L.; Bagutski, V.; French, R. M.; Aggarwal, V. K. Nature 2008, 456, 778.
(j) Jung, B.; Kang, S. H. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 1471.
(k) Jung, B.; Hong, M. S.; Kang, S. H. Angew. Chem., Int. Ed. 2007, 46, 2616.
(l) Zhang, K.; Peng, Q.; Hou, X.-L.; Wu, Y.-D. Angew. Chem., Int. Ed. 2008, 47, 1741.
(m) Lalonde, M. P.; Chen, Y.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45, 6366.
(n) Teng, X.; Cefalo, D. R.; Schrock, R. R.; Hoveyda, A. H. J. Am. Chem. Soc. 2002, 124, 10779.
(o) Deng, D.; Zhang, Y.; Sun, A.; Sai, K.; Hu, Y. Chin. J. Org. Chem. 2018, 38, 1185.
(p) Liu, Y.-L.; Yin, X.-P.; Zhou, J. Chin. J. Chem. 2018, 36, 321.
[5] (a) Hartwig, J. F. Allylic Substitution, University Science Books, Sausalito, CA, 2010.
(b) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258.
(c) Trost, B. M.; Crawley, M. L.; Chem. Rev. 2003, 103, 2921.
[6] For Pd-catalyzed asymmetric intramolecular allylic etherification of phenol allylic carbonates for the synthesis of chiral chromans, see:(a) Trost, B. M.; Shen, H. C.; Dong, L.; Surivet, J.-P.; Sylvain, C. J. Am. Chem. Soc. 2004, 126, 11966.
(b) Trost, B. M.; Shen, H. C.; Surivet, J.-P. J. Am. Chem. Soc. 2004, 126, 12565.
(c) Trost, B. M.; Shen, H. C.; Dong, L.; Surivet, J.-P. J. Am. Chem. Soc. 2003, 125, 9276.
(d) Trost, B. M.; Asakawa, N. Synthesis 1999, 1491.
(e) Mizuguchi, E.; Achiwa, K. Chem. Pharm. Bull. 1997, 45, 1209.
[7] For Pd-catalyzed asymmetric intermolecular allylic etherification of phenols to 3,3-disubstituted allylic carbonates, see:(a) Sawayama, A. M.; Tanaka, H.; Wandless, T. J. J. Org. Chem. 2004, 69, 8810.
(b) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 9074.
[8] (a) Trost, B. M.; McEachern, E. J.; Toste, F. D. J. Am. Chem. Soc. 1998, 120, 12702.
(b) Trost, B. M.; Brown, B. S.; McEachern, E. J.; Kuhn, O. Chem.-Eur. J. 2003, 9, 4442.
[9] (a) Khan, I.; Zhao, C.; Zhang, Y. J. Chem. Commun. 2018, 54, 4708.
(b) Khan, A.; Khan, S.; Khan, I.; Zhao, C.; Mao, Y.; Chen, Y.; Zhang, Y. J. J. Am. Chem. Soc. 2017, 139, 10733.
(c) Yang, L.; Khan, A.; Zheng, R.; Jin, L. Y.; Zhang, Y. J. Org. Lett. 2015, 17, 6230.
(d) Khan, A.; Zhang, Y. J. Synlett 2015, 26, 853.
(e) Khan, A.; Xing, J.; Zhao, J.; Kan, Y.; Zhang, W.; Zhang, Y. J. Chem.-Eur. J. 2015, 21, 120.
(f) Khan, A.; Zheng, R.; Kan, Y.; Ye, J.; Xing, J.; Zhang, Y. J. Angew. Chem., Int. Ed. 2014, 53, 6439.
(g) Khan, A.; Yang, L.; Xu, J.; Jin, L. Y.; Zhang, Y. J. Angew. Chem., Int. Ed. 2014, 53, 11257.
[10] For selected reviews, see:(a) Fu, J.; Huo, X.; Li, B.; Zhang, W. Org. Biomol. Chem. 2017, 15, 9747.
(b) Afewerki, S.; Córdova, A. Chem. Rev. 2016, 116, 13512.
(c) Meazza, M.; Rios, R. Synthesis 2016, 48, 960.
(d) Inamdar, S. M.; Shinde, V. S.; Patil, N. T. Org. Biomol. Chem. 2015, 13, 8116.
(e) Sun, Z.; He, J.; Qu, M.; Li, K. Chin. J. Org. Chem. 2015, 35, 1250(in Chinese). (孙哲, 何金梅, 屈孟男, 李侃社, 有机化学, 2015, 35, 1250.)
(f) Du, Z.; Shao, Z. Chem. Soc. Rev. 2013, 42, 1337.
(g) Allen, A. E.; Macmillan, D. W. Chem. Sci. 2012, 3, 633.
(h) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745.
(i) Lee, J. M.; Na, Y.; Han, H.; Chang, S. Chem. Soc. Rev. 2004, 33, 302.
[11] Chen, G.; Deng, Y.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron:Asymmetry 2001, 12, 1567.
[12] Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 3329.
[13] (a) Han, Z.; Gong, L. Prog. Chem. 2018, 30, 505.
(b) Chen, D. F.; Han, Z. Y.; Zhou, X. L.; Gong, L. Z. Acc. Chem. Res. 2014, 47, 2365.
(c) Wu, X.; Li, M.; Gong, L. Acta Chim. Sinica 2013, 71, 1091(in Chinese). (吴祥, 李明丽, 龚流柱, 化学学报, 2013, 71, 1091.)
[14] (a) Konishi, H.; Lam, T. Y.; Malerich, J. P.; Rawal, V. H. Org. Lett. 2010, 12, 2028.
(b) Zhu, Y.; Malerich, J. P.; Rawal, V. H. Angew. Chem., Int. Ed. 2010, 49, 153.
/
〈 |
|
〉 |