研究通讯

镍催化氟代烯基硼酯与烷基卤化物Suzuki偶联反应

  • 何世江 ,
  • 皮静静 ,
  • 李炎 ,
  • 陆熹 ,
  • 傅尧
展开
  • 中国科学技术大学化学系 合肥 230026

收稿日期: 2018-08-13

  网络出版日期: 2018-11-09

基金资助

项目受国家自然科学基金(Nos.21572212,21732006,21702200,51821006)和合肥物理科学技术中心发展规划重点项目(2017FXZY001)资助.

Nickel-Catalyzed Suzuki-Type Cross Coupling of Fluorinated Alkenyl Boronates with Alkyl Halides

  • He Shijiang ,
  • Pi Jingjing ,
  • Li Yan ,
  • Lu Xi ,
  • Fu Yao
Expand
  • Department of Chemistry, University of Science and Technology of China, Hefei 230026

Received date: 2018-08-13

  Online published: 2018-11-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21572212, 21732006, 21702200, 51821006), and Major Program of Development Foundation of Hefei Center for Physical Science and Technology (2017FXZY001).

摘要

有机化合物特定位点嵌入氟原子或含氟片段,可以产生独特的生物或物理性质改变.单氟取代烯基是生物医药领域理想的酰胺键替代物,在医药化学、药物研发等方向已经获得广泛的应用.通过溴化镍(Ⅱ)二乙二醇二甲醚复合物、4,4'-二叔丁基-2,2'-二吡啶的催化体系,实现了多种氟代烯基硼酯与一级烷基卤化物碘代物、溴代物以及二级烷基溴代物的Suzuki偶联反应.该反应具有良好的收率和优秀的官能团兼容性,能够兼容酯基、氰基、醇羟基等多种具有有机合成化学价值的官能团,为单氟取代烯烃的合成提供了方法.机理实验表明该反应可能经历烷基卤化物自由基均裂历程.

本文引用格式

何世江 , 皮静静 , 李炎 , 陆熹 , 傅尧 . 镍催化氟代烯基硼酯与烷基卤化物Suzuki偶联反应[J]. 化学学报, 2018 , 76(12) : 956 -961 . DOI: 10.6023/A18080333

Abstract

The incorporation of fluorine atoms or fluorine-containing fragments to specifical sites of organic compounds would result in unique diversifications in biological or physical properties, such as, significantly regulate the lipid solubility or metabolic stability, and promote specific binding ability to biological targets of target compounds. Monofluoroalkenes are ideal amide bond mimics, and have been widely used in the research field of pharmaceutical chemistry and drug discovery. Previously, we reported the nickel-catalyzed reductive cross coupling of gem-difluoroalkenes with unactivated secondary alkyl iodides and tertiary alkyl bromides. However, only medium yield can be obtained with primary alkyl halides, which might be caused by the lower stability and nucleophilic activity of these substrates. Herein, we report the nickel-catalyzed Suzuki-type cross coupling of fluorinated alkenyl boronates with alkyl halides for the synthesis of primary alkyl group substituted monofluoroalkenes. By using NiBr2(diglyme) (10 mol%) and 4,4'-di-tert-butyl-2,2'-bipyridine (15 mol%) as catalytic systems, Na2CO3 (2 equiv.) as base, N,N-dimethylacetamide as solvent, we achieved the cross coupling of a variety of fluorinated alkenyl boronates with primary alkyl iodides (e.g., 5), bromides (e.g., 9) and relatively inert secondary alkyl bromide (20). Under the mild reaction conditions, this reaction performed smoothly with good isolated yields and well functional group toleration. Many synthetically useful functional groups could survive during the transformation, such as, ether (6, 7), trifluoromethyl (8), cyano (10), ester (11), and even unprotected alcohol hydroxyl group (13). In addition, heterocycles such as tetrahydrofuran (14), phthalimide (15), dioxane (16), indole (17), pyridine (27) and quinoline (35) also posed no problem for this reaction. It should be pointed out that, this reaction is applicable not only to non-activated alkyl halides, but also to the conversion of activated allyl bromides (18, 19). For the fluorinated alkenyl boronates, this reaction also exhibited good functional group compatibility and wide substrate scope, and conducted successfully with both electron-rich (e.g., 4, 24), electron-neutral (e.g., 21), or electron-deficient (e.g., 27, 31) aromatic rings. Finally, the toleration of aryl sulfonate (30) provided further opportunities for subsequent modification through transition-metal-catalyzed cross coupling reactions. Radical clock experiment with (Z)-8-iodooct-3-ene (36) provided a mixture of linear product (37a) and ring-cyclized product (37b). (Bromomethyl)cyclopropane (38) was also subjected to the standard reaction conditions, only ring-opening product (39a) was obtained. In addition, this reaction was significantly inhibited with the addition of TEMPO (2,2,6,6-tetramethylpiperidinooxy). These results indicated a radical-type reaction mechanism for the cross coupling of fluorinated alkenyl boronates with alkyl halides. Further efforts would be devoted to develop one-pot synthesis of monofluoroalkenes through in-situ borylation of gem-difluoroalkenes and subsequent Suzuki-type cross coupling with alkyl halides.

参考文献

[1] (a) Gao, B.; Zhao, Y.; Hu, J. Angew. Chem., Int. Ed. 2015, 54, 638.
(b) Wu, X.; Xie, F.; Gridnev, I. D.; Zhang, W. Org. Lett. 2018, 20, 1638.
(c) Wang, M.; Pu, X.; Zhao, Y.; Wang, P.; Li, Z.; Zhu, C.; Shi, Z. J. Am. Chem. Soc. 2018, 140, 9061.
(d) Li, G.; Wang, T.; Fei, F.; Su, Y.-M.; Li, Y.; Lan, Q.; Wang, X.-S. Angew. Chem., Int. Ed. 2016, 55, 3491.
(e) Gong, T.-J.; Xu, M.-Y.; Yu, S.-H.; Yu, C.-G.; Su, W.; Lu, X.; Xiao, B.; Fu, Y. Org. Lett. 2018, 20, 570.
(f) Zheng, J.; Cai, J.; Lin, J.-H.; Guo, Y.; Xiao, J.-C. Chem. Commun. 2013, 49, 7513.
(g) Sha, M.; Zhang, D.; Pan, R.; Xing, P.; Jiang, B. Acta Chim. Sinica 2015, 73, 395(in Chinese). (沙敏, 张丁, 潘仁明, 邢萍, 姜标, 化学学报, 2015, 73, 395.)
(h) Gou, B.; Yang, C.; Zhang, L.; Xia, W. Acta Chim. Sinica 2017, 75, 66(in Chinese). (苟宝权, 杨超, 张磊, 夏吾炯, 化学学报, 2017, 75, 66.)
(i) Zhang, P.; Lu, L.; Shen, Q. Acta Chim. Sinica 2017, 75, 744(in Chinese). (张盼盼, 吕龙, 沈其龙, 化学学报, 2017, 75, 744.)
(j) Wang, J.; Li, F.; Xu, Y.; Wang, J.; Wu, Z.; Yang, C.; Liu, L. Chin. J. Org. Chem. 2018, 38, 1155.
(k) Wang, Q.; Gao, K.; Zou, J.; Zeng, R. Chin. J. Org. Chem. 2018, 38, 863(in Chinese). (王清, 高克成, 邹建平, 曾润生, 有机化学, 2018, 38, 863.)
(l) Wang, D.; Yuan, Z.; Liu, Q.; Chen, P.; Liu, G. Chin. J. Chem. 2018, 36, 507.
[2] (a) Hu, M.; He, Z.; Gao, B.; Li, L.; Ni, C.; Hu, J. J. Am. Chem. Soc. 2013, 135, 17302.
(b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881.
(c) Zhou, N.; Xu, P.; Li, W.; Cheng, Y.; Zhu, C. Acta Chim. Sinica 2017, 75, 60(in Chinese). (周能能, 胥攀, 李伟鹏, 成义祥, 朱成建, 化学学报, 2017, 75, 60.)
(d) Rong, J.; Ni, C.; Wang, Y.; Kuang, C.; Gu, Y.; Hu, J. Acta Chim. Sinica 2017, 75, 105(in Chinese). (荣健, 倪传法, 王云泽, 匡翠文, 顾玉诚, 胡金波, 化学学报, 2017, 75, 105.)
(e) Sun, X.; Wang, W.; Ma, J.; Yu, S. Acta Chim. Sinica 2017, 75, 115(in Chinese). (孙晓阳, 王文敏, 马晶, 俞寿云, 化学学报, 2017, 75, 115.)
(f) Xu, J.; Chen, P.; Ye, J.; Liu, G. Acta Chim. Sinica 2015, 73, 1294(in Chinese). (徐佳斌, 陈品红, 叶金星, 刘国生, 化学学报, 2015, 73, 1294.)
(g) Zhao, X.; Li, T.; Tian, M.; Su, Z.; Wei, A.; Lu, K. Chin. J. Org. Chem. 2018, 38, 677.
(h) Liu, L.; Huang, D.; Wang, Y.; Wen, L.; Yang, Z.; Su, Y.; Wang, K.; Hu, Y. Chin. J. Org. Chem. 2018, 38, 1469.
(i) Liu, Q.; Hu, X. Chin. J. Org. Chem. 2018, 38, 1525.
(j) Gu, Y.; Lu, C.; Gu, Y.; Shen, Q. Chin. J. Chem. 2018, 36, 55.
(k) Fu, X.-P.; Xiao, Y.-L.; Zhang, X. Chin. J. Chem. 2018, 36, 143.
(l) Shi, H.; Lai, B.; Chen, S.; Zhou, X.; Nie, J.; Ma, J.-A. Chin. J. Chem. 2017, 35, 1693.
[3] (a) Okoromoba, O. E.; Han, J.; Hammond, G. B.; Xu, B. J. Am. Chem. Soc. 2014, 136, 14381.
(b) Dutheuil, G.; Couve-Bonnaire, S.; Pannecoucke, X. Angew. Chem., Int. Ed. 2007, 46, 1290.
(c) Liu, T.-L.; Wu, J. E.; Zhao, Y. Chem. Sci. 2017, 8, 3885.
(d) Jakobsche, C. E.; Peris, G.; Miller, S. J. Angew. Chem., Int. Ed. 2008, 47, 6707.
(e) Sommer, H.; Fürstner, A. Chem. Eur. J. 2017, 23, 558.
[4] (a) Daubresse, N.; Chupeau, Y.; Francesch, C.; Lapierre, C.; Pollet, B.; Rolando, C. Chem. Commun. 1997, 1489.
(b) Chen, C. Y.-C. J. Taiwan Inst. Chem. Eng. 2009, 40, 155.
(c) Haidoune, M. B.; Raynaud, I.; O'Connor, N.; Richomme, P.; Mornet, R.; Laloue, M. J. Agric. Food Chem. 1998, 46, 1577.
(d) Lin, J.; Toscano, P. J.; Welch, J. T. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 14020.
(e) Van der Veken, P.; Senten, K.; Kertèsz, I.; De Meester, I.; Lambeir, A.-M.; Maes, M.-B.; Scharpé, S.; Haemers, A.; Augustyns, K. J. Med. Chem. 2005, 48, 1768.
(f) Liu, Q.; Shen, X.; Ni, C.; Hu, J. Angew. Chem., Int. Ed. 2017, 56, 619.
(g) Lu, X.; He, S.-J.; Cheng, W.-M.; Shi, J. Chin. Chem. Lett. 2018, 29, 1001.
[5] (a) Zhang, X.; Cao, S. Tetrahedron Lett. 2017, 58, 375.
(b) Novikov, M. A.; Nefedov, O. M. Org. Biomol. Chem. 2018, 16, 4963.
(c) Yokota, M.; Fujita, D.; Ichikawa, J. Org. Lett. 2007, 9, 4639.

(d) Takachi, M.; Kita, Y.; Tobisu, M.; Fukumoto, Y.; Chatani, N. Angew. Chem., Int. Ed. 2010, 49, 8717.
(e) Xu, L.; Zhang, Q.; Xie, Q.; Huang, B.; Dai, J.-J.; Xu, J.; Xu, H.-J. Chem. Commun. 2018, 54, 4406.
(f) Zhao, Y.; Jiang, F.; Hu, J. J. Am. Chem. Soc. 2015, 137, 5199.
(g) Kojima, R.; Kubota, K.; Ito, H. Chem. Commun. 2017, 53, 10688.
[6] (a) Zhang, X.; Lin, Y.; Zhang, J.; Cao, S. RSC Adv. 2015, 5, 7905.
(b) Zell, D.; Dhawa, U.; Müller, V.; Bursch, M.; Grimme, S.; Ackermann, L. ACS Catal. 2017, 7, 4209.
(c) Sakaguchi, H.; Uetake, Y.; Ohashi, M.; Niwa, T.; Ogoshi, S.; Hosoya, T. J. Am. Chem. Soc. 2017, 139, 12855.
(d) Tan, D.-H.; Lin, E.; Ji, W.-W.; Zeng, Y.-F.; Fan, W.-X.; Li, Q.; Gao, H.; Wang, H. Adv. Synth. Catal. 2018, 360, 1032.
(e) Hayashi, S.-i.; Nakai, T.; Ishikawa, N. Chem. Lett. 1980, 9, 935.
(f) Zhang, B.; Zhang, X.; Hao, J.; Yang, C. Org. Lett. 2017, 19, 1780.
(g) Fuchibe, K.; Mayumi, Y.; Zhao, N.; Watanabe, S.; Yokota, M.; Ichikawa, J. Angew. Chem., Int. Ed. 2013, 52, 7825.
(h) Ichitsuka, T.; Fujita, T.; Arita, T.; Ichikawa, J. Angew. Chem., Int. Ed. 2014, 53, 7564.
(i) Sakaguchi, H.; Ohashi, M.; Ogoshi, S. Angew. Chem., Int. Ed. 2018, 57, 328.
(j) Cong, Z.-S.; Li, Y.-G.; Chen, L.; Xing, F.; Du, G.-F.; Gu, C.-Z.; He, L. Org. Biomol. Chem. 2017, 15, 3863.
(k) Xiong, Y.; Huang, T.; Ji, X.; Wu, J.; Cao, S. Org. Biomol. Chem. 2015, 13, 7389.
(l) Dai, W.; Shi, H.; Zhao, X.; Cao, S. Org. Lett. 2016, 18, 4284.
(m) Yang, L.; Ji, W.-W.; Lin, E.; Li, J.-L.; Fan, W.-X.; Li, Q.; Wang, H. Org. Lett. 2018, 20, 1924.
(n) Li, J.; Lefebvre, Q.; Yang, H.; Zhao, Y.; Fu, H. Chem. Commun. 2017, 53, 10299.
(o) Xing, B.; Ni, C.; Hu, J. Chin. J. Chem. 2018, 36, 206.
(p) Zhang, Z.; Zhou, Q.; Yu, W.; Li, T.; Zhang, Y.; Wang, J. Chin. J. Chem. 2017, 35, 387.
[7] Tian, P.; Feng, C.; Loh, T.-P. Nat. Commun. 2015, 6, 7472.
[8] (a) Kong, L.; Zhou, X.; Li, X. Org. Lett. 2016, 18, 6320.
(b) Wu, J.-Q.; Zhang, S.-S.; Gao, H.; Qi, Z.; Zhou, C.-J.; Ji, W.-W.; Liu, Y.; Chen, Y.; Li, Q.; Li, X.; Wang, H. J. Am. Chem. Soc. 2017, 139, 3537.
(c) Ji, W.-W.; Lin, E.; Li, Q.; Wang, H. Chem. Commun. 2017, 53, 5665.
[9] Xie, J.; Yu, J.; Rudolph, M.; Rominger, F.; Hashmi, A. S. K. Angew. Chem., Int. Ed. 2016, 55, 9416.
[10] Thornbury, R. T.; Toste, F. D. Angew. Chem., Int. Ed. 2016, 55, 11629.
[11] Zhang, J.; Dai, W.; Liu, Q.; Cao, S. Org. Lett. 2017, 19, 3283.
[12] Hu, J.; Han, X.; Yuan, Y.; Shi, Z. Angew. Chem., Int. Ed. 2017, 56, 13342.
[13] (a) Lu, X.; Wang, Y.; Zhang, B.; Pi, J.-J.; Wang, X.-X.; Gong, T.-J.; Xiao, B.; Fu, Y. J. Am. Chem. Soc. 2017, 139, 12632.
(b) Xu, J.; Ahmed, E.-A.; Xiao, B.; Lu, Q.-Q.; Wang, Y.-L.; Yu, C.-G.; Fu, Y. Angew. Chem., Int. Ed. 2015, 54, 8231.
(c) Xu, J.; Fu, Y.; Luo, D.-F.; Jiang, Y.-Y.; Xiao, B.; Liu, Z.-J.; Gong, T.-J.; Liu, L. J. Am. Chem. Soc. 2011, 133, 15300.
[14] (a) Lu, X.; Xiao, B.; Zhang, Z.; Gong, T.; Su, W.; Yi, J.; Fu, Y.; Liu, L. Nat. Commun. 2016, 7, 11129.
(b) Lu, X. Ph.D. Dissertation, University of Science and Technology of China, Hefei, 2016(in Chinese). (陆熹, 博士论文, 中国科学技术大学, 合肥, 2016.)
(c) Xiao, Y.; Pan, Q.; Zhang, X. Acta Chim. Sinica 2015, 73, 383(in Chinese). (肖玉兰, 潘强, 张新刚, 化学学报, 2015, 73, 383.)
(d) Xu, J.; Xiao, B.; Xie, C.-Q.; Luo, D.-F.; Liu, L.; Fu, Y. Angew. Chem., Int. Ed. 2012, 51, 12551.
[15] Lu, X.; Xiao, B.; Liu, L.; Fu, Y. Chem. Eur. J. 2016, 22, 11161.
[16] Yi, J.; Lu, X.; Sun, Y.-Y.; Xiao, B.; Liu, L. Angew. Chem., Int. Ed. 2013, 52, 12409.
[17] (a) González-Bobes, F.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 5360.
(b) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 624.
(c) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340.

文章导航

/