收稿日期: 2018-10-16
网络出版日期: 2018-11-26
基金资助
项目受国家自然科学基金(Nos.21472054,21761132014,21772050,21702068)、生命有机化学国家重点实验室开放基金(No.SKLBNPC13425)和武汉市创新人才开发资金的资助.
Advances on Photo-Promoted Glycosylation Reactions
Received date: 2018-10-16
Online published: 2018-11-26
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21472054, 21761132014, 21772050, 21702068), the State Key Laboratory of Bio-organic and Natural Products Chemistry (No. SKLBNPC13425) and Wuhan Creative Talent Development Fund.
王浩 , 吴品儒 , 赵祥 , 曾静 , 万谦 . 光促进的糖基化反应研究进展[J]. 化学学报, 2019 , 77(3) : 231 -241 . DOI: 10.6023/A18100429
Carbohydrates, along with proteins and nucleic acids are known as basic life substances, which not only are the energy source and structure material, but also play an extremely important role in many biochemical processes, such as molecules recognition, information transformation in cells, interactions in immune response, differentiation and apoptosis of cells, etc. Compared to proteins and nucleic acids, the synthesis of oligosaccharides in chemical or enzymatic ways is more difficult, due to their diversified and complicated structures. Recently photo especially visible light promoted organic synthesis has become one of the fastest growing fields in organic chemistry attributed to its environmental friendliness, easy availability and low cost. This chemistry has also been applied to the photo-mediated glycosylation reactions by using various light sources (ultraviolet, visible light), photosensitizers (or photocatalysts), and additives (oxidants, reductants etc.), which provides milder and more effective ways for oligosaccharide assembly. To help chemists understand this field, we briefly reviewed recent advances and potential applications of photo-mediated glycosylation reactions according to their types (e.g. light sources, photosensitizers). In this review, we also detailly described the mechanisms and highlighted the advantages and limitations of these reactions. In addition, the further prospects of this area are proposed.
[1] (a) Cai, M.-S.; Li, Z.-J. Carbohydrate Chemistry, Chemical Industry Press, Beijing, 2007, pp. 1~33. (蔡孟深, 李中军, 糖化学, 化学工业出版社, 北京, 2007, pp. 1~33.)
(b). Kong, F.-Z. Carbohydrate Chemistry, Science Press, Beijing, 2005, pp. 1~41. (孔繁祚, 糖化学, 科学出版社, 北京, 2005, pp. 1~41.)
[2] Guo, Z.; Wang, L. Prog. Chem. 1995, 7, 10. (郭忠武, 王来曦, 化学进展, 1995, 7, 10.)
[3] Varki, A.; Cummings, R.-D.; Esko, J.-D.; Freeze, H.-H.; Stanley, P.; Bertozzi, C.-R.; Hart, G.-W.; Etzler, M.-E. Essential of Glycobiology, Cold Spring Harbor Laboratory Press, 2008, pp. 1~21.
[4] Chen, L.-Q.; Lai, D.; Song, Z.-W.; Zhao, X.-E.; Kong, F.-Z. Chin. J. Org. Chem. 2006, 26, 627. (陈朗秋, 赖端, 宋志伟, 赵兴俄, 孔繁祚, 有机化学, 2006, 26, 627.)
[5] Fischer, E. Chem. Ber. 1893, 26, 2400.
[6] (a) Koenigs, W.; Knorr, E. Chem. Ber. 1901, 34, 957.
(b) Schmidt, R. R.; Michel, J. Angew. Chem. 1980, 92, 763.
(c) Geng, Y.; Zhang, L.-H.; Ye, X.-S. Chem. Commun. 2008, 5, 597.
(d) Raghavan, S.; Kahne, D. J. Am. Chem. Soc. 1993, 115, 1580.
(e) Tang, Y.; Li, J.; Zhu, Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. 2013, 135, 18396.
[7] (a) Shu, P.; Xiao, X.; Zhao, Y.; Xu, Y.; Yao, W.; Tao, J.; Wang, H.; Yao, G.; Lu, Z.; Zeng, J.; Wan, Q. Angew. Chem., Int. Ed. 2015, 54, 14432.
(b) Xiao, X.; Zhao, Y.; Shu, P.; Zhao, X.; Liu, Y.; Sun, J.; Zhang, Q.; Zeng, J.; Wan, Q. J. Am. Chem. Soc. 2016, 138, 13402.
(c) Hu, Y.; Yu, K.; Shi, L.-L.; Liu, L.; Sui, J.-J.; Liu, D.-Y.; Xiong, B.; Sun, J.-S. J. Am. Chem. Soc. 2017, 139, 12736.
(d) Wang, H.-Y.; Simmons, C. J.; Blaszczyk, S. A.; Balzer, P. G.; Luo, R.; Duan, X.; Tang, W. Angew. Chem., Int. Ed. 2017, 56, 15698.
(e) Wadzinski, T. J.; Steinauer, A.; Hie, L.; Pelletier, G.; Schepartz, A.; Miller, S. J. Nature Chem. 2018, 10, 644.
[8] (a) Xu, Y.; Zhang, J.; Dong, Y.; Tan, W. Chin. J. Org. Chem. 2017, 37, 2929. (许一仁, 张建军, 董燕红, 谭伟明, 有机化学, 2017, 37, 2929.)
(b) Ren, H.; Tao, J.; An, H. Chin. J. Org. Chem. 2018, 38, 138. (任行, 陶京朝, 安浩云, 有机化学, 2018, 38, 138.)
(c) Shen, R.; Cao, X.; Yu, B. Acta Chim. Sinica 2018, 76, 278. (沈仁增, 曹鑫, 俞飚, 化学学报, 2018, 76, 278.)
(d) Zhua, D.; Yu, B. Chin. J. Chem. 2018, 36, 681.
[9] Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
[10] Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886.
[11] Nguyen, J. D.; D'Amato, E. M.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2012, 4, 854.
[12] Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
[13] (a) Sangwan, R.; Mandal, P. K. RSC Adv. 2017, 7, 26256.
(b) Ye, H.; Xiao, C.; Lu, L. Chin. J. Org. Chem. 2018, 38, 1897. (叶辉, 肖聪, 陆良秋, 有机化学, 2018, 38, 1897.)
[14] Yamago, S.; Miyazoe, H.; Yoshida, J.-i. Tetrahedron Lett. 1999, 40, 2339.
[15] Nakanishi, M.; Takahashi, D.; Toshima, K. Org. Biomol. Chem. 2013, 11, 5079.
[16] Mao, R.-Z.; Guo, F.; Xiong, D.-C.; Li, Q.; Duan, J.; Ye, X.-S. Org. Lett. 2015, 17, 5606.
[17] Mao, R.-Z.; Xiong, D.-C.; Guo, F.; Li, Q.; Duan, J.; Ye, X.-S. Org. Chem. Front. 2016, 3, 737.
[18] Hashimoto, S.; Kurimoto, I.; Fujii, Y.; Noyori, R. J. Am. Chem. Soc. 1985, 107, 1427.
[19] Griffin, G. W.; Bandara, N. C.; Clarke, M. A.; Tsang, W.-S.; Ga-regg, P. J.; Oscarson, S.; Silwanis, B. A. Heterocycles 1990, 30, 939.
[20] Furuta, T.; Takeuchi, K.; Iwamura, M. Chem. Commun. 1996, 147, 157.
[21] Cumpstey, I.; Crich, D. J. Carbohydr. Chem. 2011, 30, 469.
[22] Iwata, R.; Uda, K.; Takahashi, D.; Toshima, K. Chem. Commun. 2014, 50, 10695.
[23] Kimura, T.; Eto, T.; Takahashi, D.; Toshima, K. Org. Lett. 2016, 18, 3190.
[24] (a) Balmond, E. I.; Coe, D. M.; Galan, M. C.; McGarrigle, E. M. Angew. Chem., Int. Ed. 2012, 51, 9152.
(b) Balmond, E. I.; Benito-Alifonso, D.; Coe, D. M.; Alder, R. W.; McGarrigle, E. M.; Galan, M. C. Angew. Chem., Int. Ed. 2014, 53, 8190.
(c) Sau, A.; Williams, R.; Palo-Nieto, C.; Franconetti, A.; Medina, S.; Galan, M. C. Angew. Chem., Int. Ed. 2017, 56, 3640.
(d) Palo-Nieto, C.; Sau, A.; Galan, M. C. J. Am. Chem. Soc. 2017, 139, 14041.
[25] Zhao, G.; Wang, T. Angew. Chem., Int. Ed. 2018, 57, 6120.
[26] Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2010, 49, 7274.
[27] Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2012, 51, 4140.
[28] Spell, M.; Wang, X.; Wahba, A. E.; Conner, E.; Ragains, J. Carbohydr. Res. 2013, 369, 42.
[29] Wever, W. J.; Cinelli, M. A.; Bowers, A. A. Org. Lett. 2013, 15, 30.
[30] Yu, Y.; Xiong, D.-C.; Mao, R.-Z.; Ye, X.-S. J. Org. Chem. 2016, 8, 7134.
[31] Zhu, Q.; Gentry, E. C.; Knowles, R. R. Angew. Chem., Int. Ed. 2016, 55, 9969.
[32] Wen, P.; Crich, D. Org. Lett. 2017, 19, 2402.
[33] Ye, H.; Xiao, C.; Zhou, Q.-Q.; Wang, P. G.; Xiao, W.-J. J. Org. Chem. 2018, 83, 13325.
[34] (a) Arceo, E.; Jurberg, I. D.; Álvarez-Fernández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750.
(b) Lima, C. G. S.; Lima, T. de M.; Duarte, M.; Jurberg, I. D.; Paixão, M. W. ACS Catal. 2016, 6, 1389.
[35] Spell, M. L.; Deveaux, K.; Bresnahan, C. G.; Bernard, B. L.; Sheffield, W.; Kumar, R.; Ragains, J. R. Angew. Chem., Int. Ed. 2016, 55, 6515.
/
〈 |
|
〉 |