综述

光促进的糖基化反应研究进展

  • 王浩 ,
  • 吴品儒 ,
  • 赵祥 ,
  • 曾静 ,
  • 万谦
展开
  • 华中科技大学药学院 武汉 430030
王浩,山东临沂人,2012年于烟台大学获学士学位,2018年于华中科技大学获博士学位,师从万谦教授,主要从事可见光介导的自由基还原反应及其在脱氧糖合成中的应用研究;吴品儒,浙江温州人,2017年于华中科技大学获学士学位,同年于华中科技大学继续攻读硕士学位,师从万谦教授,主要从事糖合成方法学及寡糖合成研究;赵祥,安徽阜阳人,2015年于华中科技大学获学士学位,同年于华中科技大学继续攻读博士学位,师从万谦教授,主要从事可见光介导的自由基还原反应机理及应用研究;曾静,湖北利川人;2004年于东南大学获学士学位;2007年于厦门大学获硕士学位,2013年于南洋理工大学获博士学位,师从Liu Xue-wei教授;同年加入华中科技大学药学院,主要从事糖化学及糖类药物的研究;万谦,湖北武汉人;1997年于华中师范大学获学士学位;2004年于巴黎第十一大学获博士学位,师从André Lubineau教授;同年加入美国斯隆-凯特林癌症研究中心Samuel J. Danishefsky课题组从事博士后研究;2012年至今于华中科技大学药学院开展独立研究工作.主要从事糖化学、自由基化学及药物化学等研究.

收稿日期: 2018-10-16

  网络出版日期: 2018-11-26

基金资助

项目受国家自然科学基金(Nos.21472054,21761132014,21772050,21702068)、生命有机化学国家重点实验室开放基金(No.SKLBNPC13425)和武汉市创新人才开发资金的资助.

Advances on Photo-Promoted Glycosylation Reactions

  • Wang Hao ,
  • Wu Pinru ,
  • Zhao Xiang ,
  • Zeng Jing ,
  • Wan Qian
Expand
  • School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030

Received date: 2018-10-16

  Online published: 2018-11-26

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21472054, 21761132014, 21772050, 21702068), the State Key Laboratory of Bio-organic and Natural Products Chemistry (No. SKLBNPC13425) and Wuhan Creative Talent Development Fund.

摘要

糖类化合物与蛋白质、核酸均为基本的生命物质.糖不仅是生物体内的能量来源与结构物质,而且在许多生化过程(分子间识别、细胞间信息传递、免疫应答反应、细胞的分化和凋亡等)中也发挥着极为重要的作用.相较于核酸和蛋白质,糖类由于其种类的多样性和结构的复杂性,难有统一、高效的合成方法.伴随着光化学反应在有机合成中的应用,光促进的糖基化反应也吸引了越来越多科研工作者的注意.主要根据光促进糖基化反应使用的光源(紫外光、可见光)、催化剂(金属催化剂、非金属催化剂)的类型对近年来光促进糖基化反应的发展和应用进行分类总结和展望.

本文引用格式

王浩 , 吴品儒 , 赵祥 , 曾静 , 万谦 . 光促进的糖基化反应研究进展[J]. 化学学报, 2019 , 77(3) : 231 -241 . DOI: 10.6023/A18100429

Abstract

Carbohydrates, along with proteins and nucleic acids are known as basic life substances, which not only are the energy source and structure material, but also play an extremely important role in many biochemical processes, such as molecules recognition, information transformation in cells, interactions in immune response, differentiation and apoptosis of cells, etc. Compared to proteins and nucleic acids, the synthesis of oligosaccharides in chemical or enzymatic ways is more difficult, due to their diversified and complicated structures. Recently photo especially visible light promoted organic synthesis has become one of the fastest growing fields in organic chemistry attributed to its environmental friendliness, easy availability and low cost. This chemistry has also been applied to the photo-mediated glycosylation reactions by using various light sources (ultraviolet, visible light), photosensitizers (or photocatalysts), and additives (oxidants, reductants etc.), which provides milder and more effective ways for oligosaccharide assembly. To help chemists understand this field, we briefly reviewed recent advances and potential applications of photo-mediated glycosylation reactions according to their types (e.g. light sources, photosensitizers). In this review, we also detailly described the mechanisms and highlighted the advantages and limitations of these reactions. In addition, the further prospects of this area are proposed.

参考文献

[1] (a) Cai, M.-S.; Li, Z.-J. Carbohydrate Chemistry, Chemical Industry Press, Beijing, 2007, pp. 1~33. (蔡孟深, 李中军, 糖化学, 化学工业出版社, 北京, 2007, pp. 1~33.)
(b). Kong, F.-Z. Carbohydrate Chemistry, Science Press, Beijing, 2005, pp. 1~41. (孔繁祚, 糖化学, 科学出版社, 北京, 2005, pp. 1~41.)
[2] Guo, Z.; Wang, L. Prog. Chem. 1995, 7, 10. (郭忠武, 王来曦, 化学进展, 1995, 7, 10.)
[3] Varki, A.; Cummings, R.-D.; Esko, J.-D.; Freeze, H.-H.; Stanley, P.; Bertozzi, C.-R.; Hart, G.-W.; Etzler, M.-E. Essential of Glycobiology, Cold Spring Harbor Laboratory Press, 2008, pp. 1~21.
[4] Chen, L.-Q.; Lai, D.; Song, Z.-W.; Zhao, X.-E.; Kong, F.-Z. Chin. J. Org. Chem. 2006, 26, 627. (陈朗秋, 赖端, 宋志伟, 赵兴俄, 孔繁祚, 有机化学, 2006, 26, 627.)
[5] Fischer, E. Chem. Ber. 1893, 26, 2400.
[6] (a) Koenigs, W.; Knorr, E. Chem. Ber. 1901, 34, 957.
(b) Schmidt, R. R.; Michel, J. Angew. Chem. 1980, 92, 763.
(c) Geng, Y.; Zhang, L.-H.; Ye, X.-S. Chem. Commun. 2008, 5, 597.
(d) Raghavan, S.; Kahne, D. J. Am. Chem. Soc. 1993, 115, 1580.
(e) Tang, Y.; Li, J.; Zhu, Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. 2013, 135, 18396.
[7] (a) Shu, P.; Xiao, X.; Zhao, Y.; Xu, Y.; Yao, W.; Tao, J.; Wang, H.; Yao, G.; Lu, Z.; Zeng, J.; Wan, Q. Angew. Chem., Int. Ed. 2015, 54, 14432.
(b) Xiao, X.; Zhao, Y.; Shu, P.; Zhao, X.; Liu, Y.; Sun, J.; Zhang, Q.; Zeng, J.; Wan, Q. J. Am. Chem. Soc. 2016, 138, 13402.
(c) Hu, Y.; Yu, K.; Shi, L.-L.; Liu, L.; Sui, J.-J.; Liu, D.-Y.; Xiong, B.; Sun, J.-S. J. Am. Chem. Soc. 2017, 139, 12736.
(d) Wang, H.-Y.; Simmons, C. J.; Blaszczyk, S. A.; Balzer, P. G.; Luo, R.; Duan, X.; Tang, W. Angew. Chem., Int. Ed. 2017, 56, 15698.
(e) Wadzinski, T. J.; Steinauer, A.; Hie, L.; Pelletier, G.; Schepartz, A.; Miller, S. J. Nature Chem. 2018, 10, 644.
[8] (a) Xu, Y.; Zhang, J.; Dong, Y.; Tan, W. Chin. J. Org. Chem. 2017, 37, 2929. (许一仁, 张建军, 董燕红, 谭伟明, 有机化学, 2017, 37, 2929.)
(b) Ren, H.; Tao, J.; An, H. Chin. J. Org. Chem. 2018, 38, 138. (任行, 陶京朝, 安浩云, 有机化学, 2018, 38, 138.)
(c) Shen, R.; Cao, X.; Yu, B. Acta Chim. Sinica 2018, 76, 278. (沈仁增, 曹鑫, 俞飚, 化学学报, 2018, 76, 278.)
(d) Zhua, D.; Yu, B. Chin. J. Chem. 2018, 36, 681.
[9] Nicewicz, D. A.; MacMillan, D. W. C. Science 2008, 322, 77.
[10] Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P. J. Am. Chem. Soc. 2008, 130, 12886.
[11] Nguyen, J. D.; D'Amato, E. M.; Narayanam, J. M. R.; Stephenson, C. R. J. Nat. Chem. 2012, 4, 854.
[12] Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
[13] (a) Sangwan, R.; Mandal, P. K. RSC Adv. 2017, 7, 26256.
(b) Ye, H.; Xiao, C.; Lu, L. Chin. J. Org. Chem. 2018, 38, 1897. (叶辉, 肖聪, 陆良秋, 有机化学, 2018, 38, 1897.)
[14] Yamago, S.; Miyazoe, H.; Yoshida, J.-i. Tetrahedron Lett. 1999, 40, 2339.
[15] Nakanishi, M.; Takahashi, D.; Toshima, K. Org. Biomol. Chem. 2013, 11, 5079.
[16] Mao, R.-Z.; Guo, F.; Xiong, D.-C.; Li, Q.; Duan, J.; Ye, X.-S. Org. Lett. 2015, 17, 5606.
[17] Mao, R.-Z.; Xiong, D.-C.; Guo, F.; Li, Q.; Duan, J.; Ye, X.-S. Org. Chem. Front. 2016, 3, 737.
[18] Hashimoto, S.; Kurimoto, I.; Fujii, Y.; Noyori, R. J. Am. Chem. Soc. 1985, 107, 1427.
[19] Griffin, G. W.; Bandara, N. C.; Clarke, M. A.; Tsang, W.-S.; Ga-regg, P. J.; Oscarson, S.; Silwanis, B. A. Heterocycles 1990, 30, 939.
[20] Furuta, T.; Takeuchi, K.; Iwamura, M. Chem. Commun. 1996, 147, 157.
[21] Cumpstey, I.; Crich, D. J. Carbohydr. Chem. 2011, 30, 469.
[22] Iwata, R.; Uda, K.; Takahashi, D.; Toshima, K. Chem. Commun. 2014, 50, 10695.
[23] Kimura, T.; Eto, T.; Takahashi, D.; Toshima, K. Org. Lett. 2016, 18, 3190.
[24] (a) Balmond, E. I.; Coe, D. M.; Galan, M. C.; McGarrigle, E. M. Angew. Chem., Int. Ed. 2012, 51, 9152.
(b) Balmond, E. I.; Benito-Alifonso, D.; Coe, D. M.; Alder, R. W.; McGarrigle, E. M.; Galan, M. C. Angew. Chem., Int. Ed. 2014, 53, 8190.
(c) Sau, A.; Williams, R.; Palo-Nieto, C.; Franconetti, A.; Medina, S.; Galan, M. C. Angew. Chem., Int. Ed. 2017, 56, 3640.
(d) Palo-Nieto, C.; Sau, A.; Galan, M. C. J. Am. Chem. Soc. 2017, 139, 14041.
[25] Zhao, G.; Wang, T. Angew. Chem., Int. Ed. 2018, 57, 6120.
[26] Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2010, 49, 7274.
[27] Andrews, R. S.; Becker, J. J.; Gagné, M. R. Angew. Chem., Int. Ed. 2012, 51, 4140.
[28] Spell, M.; Wang, X.; Wahba, A. E.; Conner, E.; Ragains, J. Carbohydr. Res. 2013, 369, 42.
[29] Wever, W. J.; Cinelli, M. A.; Bowers, A. A. Org. Lett. 2013, 15, 30.
[30] Yu, Y.; Xiong, D.-C.; Mao, R.-Z.; Ye, X.-S. J. Org. Chem. 2016, 8, 7134.
[31] Zhu, Q.; Gentry, E. C.; Knowles, R. R. Angew. Chem., Int. Ed. 2016, 55, 9969.
[32] Wen, P.; Crich, D. Org. Lett. 2017, 19, 2402.
[33] Ye, H.; Xiao, C.; Zhou, Q.-Q.; Wang, P. G.; Xiao, W.-J. J. Org. Chem. 2018, 83, 13325.
[34] (a) Arceo, E.; Jurberg, I. D.; Álvarez-Fernández, A.; Melchiorre, P. Nat. Chem. 2013, 5, 750.
(b) Lima, C. G. S.; Lima, T. de M.; Duarte, M.; Jurberg, I. D.; Paixão, M. W. ACS Catal. 2016, 6, 1389.
[35] Spell, M. L.; Deveaux, K.; Bresnahan, C. G.; Bernard, B. L.; Sheffield, W.; Kumar, R.; Ragains, J. R. Angew. Chem., Int. Ed. 2016, 55, 6515.

文章导航

/