研究论文

铁镍合金纳米颗粒镶嵌的多级孔氮掺杂碳催化剂的制备及析氧性能研究

  • 王艺霖 ,
  • 王敏杰 ,
  • 李静 ,
  • 魏子栋
展开
  • 重庆大学化学化工学院 重庆 400044

收稿日期: 2018-08-30

  网络出版日期: 2018-11-28

基金资助

项目受国家重点研发计划(No.2016YFB0101202)和国家自然科学基金(Nos.91534205,21436003)资助.

Iron/nickel Alloy Nanoparticles Embedded in N-doped Porous Carbon for Robust Oxygen Evolution Reaction

  • Wang Yilin ,
  • Wang Minjie ,
  • Li Jing ,
  • Wei Zidong
Expand
  • School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044

Received date: 2018-08-30

  Online published: 2018-11-28

Supported by

Project supported by the National Key Research and Development Program of China (No. 2016YFB0101202) and the National Natural Science Foundation of China (Nos. 91534205, 21436003).

摘要

非贵金属铁镍合金催化剂在析氧反应(OER)中性能优异,表现出取代贵金属RuO2催化剂的巨大潜力.以SiO2为大孔模板,多巴胺为氮碳源,Fe3+,Ni2+为金属源,通过原位吸附、聚合、焙烧、刻蚀等步骤制备得到铁镍合金纳米颗粒镶嵌的多级孔氮掺杂碳催化剂.碱性介质中的析氧反应测试表明,合金催化剂达到电流密度10 mA·cm-2时过电位仅为286 mV,显著低于以RuO2为催化剂的380 mV过电位;同时经过2000圈循环伏安老化后活性几乎无衰减,稳定性高.所制备的合金催化剂具有两方面结构优势:(1)铁镍合金以及单质铁纳米颗粒镶嵌于大孔碳的薄层孔壁中,有利于暴露活性位点;(2)石墨化氮碳层对合金纳米颗粒的保护提高了材料抗腐蚀性,进而提升其稳定性.

本文引用格式

王艺霖 , 王敏杰 , 李静 , 魏子栋 . 铁镍合金纳米颗粒镶嵌的多级孔氮掺杂碳催化剂的制备及析氧性能研究[J]. 化学学报, 2019 , 77(1) : 84 -89 . DOI: 10.6023/A18080357

Abstract

Hydrogen, a clean, efficient and sustainable energy, can be produced via electrochemical water splitting, during which two key processes, hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), occur simultaneously at the two electrodes of an electrolytic cell. Nevertheless compared to the two-electron process of HER, OER, a four-electron process, is of the inherently kinetic hysteresis step, which can dramatically diminish the overall energy conversion efficiency. The highly active noble-metal-based catalyst RuO2 is considered to be one of the most efficient state-of-the-art OER catalysts. However the high cost and element scarcity significantly hinder their practical applications. Thus it is particularly urgent to develop highly-active but low-cost non-noble-metal alternatives. Iron/nickel alloy based catalysts have been widely studied owing to their promising performances. In this work, we prepared iron/nickel alloy nanoparticles embedded in N-doped hierarchically porous carbon (Fe0.64Ni0.36@NC), by simultaneously adsorbing metal precursors and dopamine on surface of SiO2 macroporous hard templates, and then annealing the system and etching the templates. In electrochemical measurements, Fe0.64Ni0.36@NC shows a superior OER activity in alkaline solution, which only needs an overpotential as low as 286 mV to deliver a current density of 10 mA·cm-2, being significantly lower than the value of 380 mV for RuO2. Besides, the catalyst displays no obvious activity decrease after 2000 cycles of continuous CV scanning, corresponding to an excellent durability. The observed nice performances of the alloy catalyst in alkaline solution can be ascribed to two critical structural features:(1) the macroporous structures made by stacking of SiO2 microspheres own relatively thin layer of carbon framework, thus the embedded iron/nickel alloy particles can well activate the surrounding carbon layer to expose copious active sites; (2) the graphitized N-doped carbon layers well protect the alloy nanoparticles from corrosion, thus improving the durability of the catalysts. This work gave a nice design for the highly efficient non-noble-metal OER catalysts.

参考文献

[1] Armaroli, N.; Balzani, V. Angew. Chem., Int. Ed. 2007, 46, 52.
[2] Ding, W.; Zhang, X.; Li, L.; Wei, Z. D. J. Electrochem. 2014, 20, 426(in Chinese). (丁炜, 张雪, 李莉, 魏子栋, 电化学, 2014, 20, 426.)
[3] Peng, L. S.; Wei, Z. D. Chinese J. Catal. 2018, 39, 1575(in Chinese). (彭立山, 魏子栋, 催化学报, 2018, 39, 1575.)
[4] Villa, I.; Villa, C.; Monguzzi, A.; Babin, V.; Tervoort, E.; Nikl, M.; Niederberger, M.; Torrente, Y.; Vedda, A.; Lauria, A. Nanoscale 2018, 10, 7933.
[5] Zhang, C.; Zhang, M. R.; Shi, H. Y.; Wang, J. P.; Niu, J. Y. Chem. Commun. 2018, 54, 5458.
[6] Guo, Y.; Yao, Y.; Li, H.; He, L. L.; Yang, Z. Z.; Zhao, D. X. Acta Chim. Sinica 2017, 75, 903(in Chinese). (郭宇, 姚宇, 李慧, 赫兰兰, 杨忠志, 赵东霞, 化学学报, 2017, 75, 903.)
[7] Zuo, L. X.; Jiang, L.; Zhu, J. J. Chin. J. Chem. 2017, 35, 969.
[8] Zou, X.; Zhang, Y. Chem. Soc. Rev. 2015, 44, 5148.
[9] Wang, S. L.; Wang, L. P.; Zhang, Z. H. Acta Phys.-Chim. Sin.2013, 29, 981(in Chinese). (王森林, 王丽品, 张振洪, 物理化学学报, 2013, 29, 981.)
[10] Wang, J.; Wei, Z. D. Acta Phys.-Chim. Sin. 2017, 33, 886(in Chinese). (王俊, 魏子栋, 物理化学学报, 2017, 33, 886.)
[11] Peng, L. S.; Wei, Z. D. Prog. Chem. 2018, 30, 14(in Chinese). (彭立山, 魏子栋, 化学进展, 2018, 30, 14.)
[12] Luo, J. L. Acta Phys.-Chim. Sin. 2018, 34, 7(in Chinese). (骆静利, 物理化学学报, 2018, 34, 7.)
[13] Zhang, Y.; Shimoda, K.; Miyaoka, H. Int. J. Hydrogen Energy 2010, 35, 12405.
[14] Hinnemann, B.; Moses, P. G.; Bonde, J.; Jorgensen, K. P.; Nielsen, J. H. J. Am. Chem. Soc. 2005, 127, 5308.
[15] Lee, Y.; Jin, S.; May, K. J.; Perry, E. E.; Yang, S. H. J. Phys. Chem. Lett. 2012, 3, 399.
[16] Over, H. Chem. Rev. 2012, 43, 3356.
[17] Liu, T. T.; Xie, L. S.; Yang, J. H.; Kong, R. M.; Sun, X. P.; Chen, L. ChemElectroChem 2017, 4, 1840.
[18] Fang, Y. H.; Liu, Z. P. J. Am. Chem. Soc. 2010, 132, 18214.
[19] Fang, Z.; Peng, L.; Zhu, Y.; Yan, C.; Wang, S.; Kalyani, P.; Wu, X.; Yu, G. ACS Nano 2017, 11, 9550.
[20] Feng, J. X.; Xu, H.; Dong, Y. T.; Ye, S. H.; Tong, Y. X.; Li, G. R. Angew. Chem., Int. Ed. 2016, 128, 3758.
[21] Ji, Y. Y.; Li, Y.; Ren, X.; Cui, G. W.; Xiong, X. L.; Sun, X. P. ACS Sustain. Chem. Eng. 2018, 6, 9555.
[22] Yang, J.; Zhu, G.; Liu, Y.; Xia, J.; Ji, Z.; Shen, X. Adv. Funct. Mater. 2016, 26, 4712.
[23] Gao, M.; Sheng, W.; Zhuang, Z.; Fang, Q.; Gu, S.; Jiang, J.; Yan, Y. J. Am. Chem. Soc. 2014, 136, 7077.
[24] Chuan, T. Y.; Chun, Z. H. Chem. Commun. 2016, 52, 11591.
[25] Hoare, J. P.; Schuldiner, S. J. Phys. Chem. 2002, 62, 229.
[26] Tang, T.; Jiang, W. J.; Niu, S.; Liu, N.; Luo, H.; Chen, Y. Y.; Jin, S. F.; Gao, F.; Wan, L. J. J. Am. Chem. Soc. 2017, 139, 8320.
[27] Li, F. L.; Shao, Q.; Huang, X.; Lang, J. P. Angew. Chem., Int. Ed. 2018, 57, 1888.
[28] Chemelewski, W. D.; Rosenstock, J. R.; Mullins, C. B. J. Mater. Chem. 2014, 2, 14957.
[29] He, Y. H.; Xu, J. M.; Wang, N. Chem. Eng. Prog. 2016, 35, 2057(in Chinese). (何杨华, 徐金铭, 王楠, 化工进展, 2016, 35, 2057.)
[30] Landon, J.; Demeter, E.; Inoglu, N.; Keturakis, C.; Wachs, I. E.; Frenkel, A. I. ACS Catal. 2012, 2, 1793.
[31] Gong, M.; Li, Y.; Wang, H.; Liang, Y.; Wu, J. Z.; Zhou, J.; Wang, J.; Regier, T.; Wei, F. J. Am. Chem. Soc. 2013, 135, 8452.
[32] Trotochaud, L.; Young, S. L.; Ranney, J. K. J. Am. Chem. Soc. 2014, 136, 6744.
[33] Smith, A. M.; Trotochaud, L.; Burke, M. S.; Boettcher, S. W. Chem. Commun. 2015, 51, 5261.
[34] Yang, Y.; Zhuang, L.; Lin, R.; Li, M.; Xu, X.; Rufford, T. E.; Zhu, Z. J. Power Sources 2017, 349, 68.
[35] Liang, Y.; Liu, Q.; Asiri, A. M.; Sun, X.; He, Y. Int. J. Hydrogen Energy 2015, 40, 13258.
[36] Zhao, Y.; Chen, S.; Sun, B.; Su, D.; Huang, X.; Liu, H.; Yan, Y.; Sun, K.; Wang, G. Sci. Rep. 2015, 5, 7629.
[37] Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. J. Am. Chem. Soc. 2014, 136, 13925.
[38] Yang, Y.; Lin, Z.; Gao, S.; Su, J.; Lun, Z.; Xia, G. ACS Catal. 2017, 7, 469.
[39] Tavakkoli, M.; Kallio, T.; Reynaud, O.; Nasibulin, A. G.; Johans, C.; Sainio, J.; Jiang, H.; Kauppinen, E. I.; Laasonen, K. Angew. Chem., Int. Ed. 2015, 54, 4535.
[40] Tao, Z.; Wang, T.; Wang, X.; Zheng, J.; Li, X. ACS Appl. Mater. Interfaces 2016, 8, 35390.
[41] Liu, Z.; Sun, F.; Gu, L.; Chen, G.; Shang, T.; Liu, J.; Le, Z.; Li, X.; Wu, H. B.; Lu, Y. Adv. Energy Mater. 2017, 7, 1701154.
[42] Guo, Y.; Liu, Y.; Qi, J. J.; Li, H.; He, L. L. Acta Chim. Sinica 2017, 75, 914(in Chinese). (郭宇, 刘瑜, 戚娟娟, 李慧, 赫兰兰, 化学学报, 2017, 75, 914.)
[43] Bao, J. Z.; Wang, S. L. Acta Phys.-Chim. Sin. 2011, 27, 2849(in Chinese). (鲍晋珍, 王森林, 物理化学学报, 2011, 27, 2849.)
[44] Yang, Q. Q.; Liu, L.; Xiao, L.; Wang, M. J.; Li, J.; Wei, Z. D. J. Mater. Chem. A 2018, 6, 14752.
[45] Ma, Y. D.; Dai, X. P.; Liu, M. Z.; Zhang, X. ACS Appl. Mater. Interfaces 2016, 8, 34396.
[46] Wu, Y.; Chen, M.; Han, Y.; Luo, H.; Su, X.; Zhang, M. T.; Lin, X.; Sun, J.; Wang, L.; Deng, L.; Zhang, W.; Cao, R. Angew. Chem., Int. Ed. 2015, 54, 4870.
[47] Zhang, B.; Xiao, C.; Xie, S.; Liang, J.; Chen, X.; Tang, Y. Chem. Mater. 2016, 28, 6934.
[48] Han, X.; Yu, C.; Zhou, S.; Zhao, C.; Huang, H.; Yang, J.; Liu, Z.; Zhao, J.; Qiu, J. Adv. Energy Mater. 2017, 7, 1602148.
[49] Wu, G.; Li, N.; Dai, C. S.; Zhou, D. R. Chinese J. Catal. 2004, 25, 319(in Chinese). (武刚, 李宁, 戴长松, 周德瑞, 催化学报, 2004, 25, 319.)
[50] Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62.

文章导航

/