NH3与Cl2在γ-Al2O3颗粒物表面的非均相反应
收稿日期: 2018-09-25
网络出版日期: 2018-12-05
基金资助
项目受国家自然科学基金(Nos.U1832212,11405184,11575210,91643206)和中科院重点部署项目(No.ZDRW-CN-2018-1)资助.
Heterogeneous Reaction of NH3 and Cl2 on the Surface of γ-Al2O3 Particles
Received date: 2018-09-25
Online published: 2018-12-05
Supported by
Project supported by the National Natural Science Foundation of China (Nos. U1832212, 11405184, 11575210, 91643206) and the Key Deployment Projects of Chinese Academy of Sciences (No. ZDRW-CN-2018-1).
使用离子色谱分析了常温、常压、湿润和氧气存在条件下,NH3和Cl2在γ-Al2O3颗粒物表面非均相反应的产物及其受NH3浓度、反应时间等的影响;并定量分析了NH3、Cl2、SO2和NO2单独及共存条件下,γ-Al2O3表面Cl-、NO3-和SO42-等二次无机颗粒物的生成总量.结果表明:NH3和Cl2在γ-Al2O3表面具有协同作用,2 h后Cl-的生成总量可达589.65 μg,其生成量随时间延长而不断增加.表面氯化物的生成量在NH3浓度为400 ppm时达到峰值,且随NH3浓度的增加呈先增加而后减少的趋势.活性氯存在下,NH3对颗粒物表面Cl-、NO3-和SO42-的生成有促进作用,且四种气体共存时复合正反馈效应最明显.同时,本研究对NH3和Cl2在颗粒物表面的非均相反应机理及活性氯和氨的排放对大气中二次无机颗粒物的贡献进行了探讨.
唐思群 , 马玲玲 , 罗敏 , 张朝晖 , 邱烨 , 冯烁 , 夏传琴 , 金永东 , 徐殿斗 . NH3与Cl2在γ-Al2O3颗粒物表面的非均相反应[J]. 化学学报, 2019 , 77(2) : 160 -165 . DOI: 10.6023/A18090401
The effect of NH3 concentration, reaction time and other conditions on the heterogeneous reaction of NH3 and Cl2 on the surface of γ-Al2O3 particles was investigated at the room temperature, pressure and in the presence of oxygen by ion chromatography (IC). The formation of the surface species (Cl-, NO3-, and SO42-) via both individual reaction and co-existing reaction of NH3, Cl2, SO2 and NO2 on the surface of γ-Al2O3 was investigated as well. The results revealed that NH3 (400 ppm) and Cl2 (400 ppm) had synergistic effect on the surface γ-Al2O3, and the total yield of Cl- was 589.65 μg after reaction of 2 h. The formation of the surface chlorides increased firstly and then decreased with the increase of ammonia concentration, and the maximum yield of Cl- was reached at 400 ppm of NH3. In the presence of active chlorine, NH3 significantly promoted the generation of the adsorptive species on the surface, such as Cl-, NO3- and SO42-, and the most obvious synergistic effect was induced to form on the conditions of four gases co-existence. The heterogeneous reaction mechanism of NH3 with Cl2 and the influence on the atmospheric environment were also discussed as well. Additionally, the mixing ratios used in the study are extremely high compared with ambient levels, which could be as a simulation to explore whether the synergistic effect obtained in this paper are also present in the real ambient conditions. We have studied a relatively low mixing ratios for heterogeneous reaction experiments, but the content of nitrate and chloride on the surface of γ-Al2O3 were lower than the limit of detection of ion chromatography. Therefore, other researches such as Knudsen cell and smog chamber study, field monitoring, and mode study are also worth for exploring in future study. The results of this study could provide reference data for the study of the contribution of active chlorine and ammonia to the formation of secondary inorganic particles.
Key words: heterogeneous reaction; secondary inorganic particles; NH3; Cl2
[1] Kang, W.-B.; Xia, Y.; Wang, J.; Wang, W. Acta Chim. Sinica 2016, 74, 694. (康文斌, 夏耘, 王骏, 王炜, 化学学报, 2016, 74, 694.)
[2] Zhu, T.; Sang, J.; Zhao, D.-F. Sci. Sinica Chim. 2010, 40, 1731. (朱彤, 尚静, 赵德峰, 中国科学:化学, 2010, 40, 1731.)
[3] Hu, M.; Shang, D.-J.; Guo, S.; Wu, Z.-J. Acta Chim. Sinica 2016, 74, 385. (胡敏, 尚冬杰, 郭松, 吴志军, 化学学报, 2016, 74, 385.)
[4] Zhang, R.; Wang, G.; Guo, S.; Zamora, M.-L.; Ying, Q.; Lin, Y.; Wang, W.; Hu, M.; Wang, Y. Chem. Rev. 2015, 115, 3803.
[5] Behera, S. N.; Sharma, M. Atmos. Environ. 2011, 45, 4015.
[6] Yu, X.-C.; He, K.-B.; Ma, Y.-L.; Duan, F.-K.; Yang, F.-R. China Environ. Sci. 2004, 24, 53. (余学春, 贺克斌, 马永亮, 段风魁, 杨复沫, 中国环境科学, 2004, 24, 53.)
[7] Xu, W.-B.; Xu, Y.-L.; Tang, X.-L.; Lei, Y.; Wang, J.-N. China Environ. Sci. 2016, 36, 3531. (薛文博, 许艳玲, 唐晓龙, 雷宇, 王金南, 中国环境科学, 2016, 36, 3531.)
[8] Zhao, D.-F.; Song, X.-J.; Zhu, T.; Zhang, Z.-F.; Liu, Y.-J.; Shang, J. Atmos. Chem. Phys. 2018, 18, 2481.
[9] Wu, L.-Y.; Tong, S.-R.; Wang, W.-G.; Ge, M.-F. Atmos. Chem. Phys. 2011, 11, 6593.
[10] Clegg, S. M.; Abbatt, J. P. D. Atmos. Chem. Phys. 2001, 1, 73.
[11] Huang, L. B.; Zhao, Y.; Li, H.; Chen, Z. M. Environ. Sci. Technol. 2015, 49, 10797.
[12] Xie, S. D.; Yu, T.; Zhang, Y. H.; Zeng, L. M.; Qi, L.; Tang, X. Y. Sci. Total Environ. 2005, 345, 153.
[13] Bedjanian, Y.; Poulet, G. Chem. Rev. 2003, 103, 4639.
[14] Ge, M.-F.; Ma, C.-P. Prog. Chem. 2009, 21, 307. (葛茂发, 马春平, 化学进展, 2009, 21, 307.)
[15] Agarwal, H.; Stenger, H. G.; Wu, S.; Fan, Z. Energ. Fuel 2006, 20, 1068.
[16] Ariya, P. A.; Khalizov, A.; Gidas, A. J. Phy. Chem. A 2002, 106, 7310.
[17] Faxon, C.; Bean, J.; Ruiz, L. Atmosphere 2015, 6, 1487.
[18] Liao, J.; Huey, L. G.; Liu, Z.; Tanner, D. J.; Cantrell, C. A.; Orlando, J. J.; Flocke, F. M.; Shepson, P. B.; Weinheimer, A. J.; Hall, S. R.; Ullmann, K.; Beine, H. J.; Wang, Y. H.; Ingall, E. D.; Stephens, C. R.; Hornbrook, R. S.; Apel, E. C.; Riemer, D.; Fried, A.; Mauldin, R. L.; Smith, J. N.; Staebler, R. M.; Neuman, J. A.; Nowak, J. B. Nat. Geosci. 2014, 7, 91.
[19] Liu, X. X; Qu, H.; Huey, G.; Wang, Y. H.; Sjostedt, S.; Zeng, L.; Lu, K. D.; Wu, Y. S.; Hu, M.; Zhu, T.; Zhang, Y. H. Environ. Sci. Technol. 2017, 51, 9588.
[20] Tang, S. Q.; Ma, L. L.; Luo, M.; Zhang, Z. H.; Cao, X. Z.; Huang, Z. L.; Xia, R.; Qiu, Y.; Feng, S.; Zhang, P.; Xia, C. Q.; Jin, Y. D.; Xu, D. D. Atmos. Environ. 2018, 188, 25.
[21] Gard, E. E.; Kleeman, M. J.; Gross, D. S.; Hughes, L. S.; Allen, J. O.; Morrical, B. D.; Fergenson, D. P.; Dienes, T.; Galli, M. E.; Johnson, R. J.; Cass, G. R.; Prather, K. A. Science 1998, 279, 1184.
[22] Chen, H. H.; Navea, J. G.; Young, M. A.; Grassian, V. H. J. Phys. Chem. A 2011, 115, 490.
[23] He, H.; Wang, Y. S.; Ma, Q. X.; Ma, J. Z.; Chu, B. W.; Ji, D. S.; Tang, G. Q.; Liu, C.; Zhang, H. X.; Hao, J. M. Sci. Rep. 2014, 4, 4172.
[24] Xue, W.-B.; Fu, F.; Wang, J.-N.; Tang, G.-Q.; Lei, Y.; Yang, J.-T.; Wang, Y.-S. China Environ. Sci. 2014, 34, 1361. (薛文博, 付飞, 王金南, 唐贵谦, 雷宇, 杨金田, 王跃思, 中国环境科学, 2014, 34, 1361.)
[25] Wang, L.-H.; Zeng, F.-G.; Xiang, W.-L.; Wang, Z.-F.; Yang, W.-Y. China Environ. Sci. 2015, 35, 2546. (王凌慧, 曾凡刚, 向伟玲, 王自发, 杨文夷, 中国环境科学, 2015, 35, 2546.)
[26] Liu, J.; An, X. Q.; Zhu, T.; Zhai, S.-X.; Li, N. China Environ. Sci. 2014, 34, 2726. (刘俊, 安兴琴, 朱彤, 翟世贤, 李楠. 中国环境科学, 2014, 34, 2726.)
[27] Zhang, L.; Chen, Y. F.; Zhao, Y. H.; Henze, D. K.; Zhu, L. Y.; Song, Y.; Paulot, F.; Liu, X. J.; Pan, Y. P.; Lin, Y.; Huang, B. X. Atmos. Chem. Phys. 2018, 18, 339.
[28] Liu, L.; Zhang, X. Y.; Xu, W.; Liu, X. J.; Li, Y.; Lu, X. H.; Zhang, Y. H.; Zhang, W. T. Atmos. Chem. Phys. 2017, 17, 9365.
[29] Pepi, F.; Ricci, A.; Rosi, M. J. Phys. Chem. 2003, 107, 2085.
[30] Veirs, D. K.; Berg, J. M.; Worl, L. A.; Narlesky, J. E; Dunn, K. A.; Louthan, J. M. R. J. Nucl. Mat. Manag. 2010, 38, 25.
[31] Réti, F.; Josepovits, V.; Perczel, I. Appl. Surf. Sci. 1993, 65, 271.
[32] Sisler, H. H.; Neth, F. T.; Drago, R. S.; Yaney, D. J. Am. Chem. Soc. 1954, 76, 3906.
[33] Oldfield, J. W.; Todd, B. Brit. Corros. J. 1991, 26, 173.
[34] Goodman, A. L.; Miller, T. M.; Grassian, V. H. J. V. Sci. Technol. A 1998, 16, 2585.
[35] Miller, T. M.; Grassian, V. H. Geophy. Res. Lett. 1998, 25, 3835.
[36] Mitchell, M. B.; Sheinker, V. N. J. Phys. Chem. 1996, 100, 7550.
[37] Waqif, M.; Saad, A. M.; Bensitel, M.; Bachelier, J.; Saur, O.; Lavalley, J. C. J. Chem. Soc. Faraday. Trans. 1992, 88, 2931.
[38] Ma, Q.; Liu, Y.; He, H. J. Phy. Chem. A 2008, 112, 6630.
[39] Rossi, M. J. Chem. Rev. 2003, 103, 4823.
[40] Schweitzer, F.; Mirabel, P.; George, C. J. Phys. Chem. A 1998, 102, 3942.
[41] Keene, W. C.; Sander, R.; Pszenny, A. A. P.; Vogt, R.; Crutzen, P. J.; Galloway, J. N. J. Aerosol Sci. 1998, 29, 339.
[42] Huang, Z. L.; Zhang, Z. H.; Kong, W. H.; Feng, S.; Qiu, Y.; Tang, S. Q.; Xia, C. Q.; Ma, L. L.; Luo, M.; Xu, D. D. Atmos. Environ. 2017, 166, 403.
/
〈 |
|
〉 |