水热法制备低维氮化硼纳米结构的研究进展
收稿日期: 2018-11-07
网络出版日期: 2018-12-14
基金资助
项目受科技部国家重点研发计划(No.2017YFB0406200)和深圳市学科布局项目(No.JCYJ20150831154213681)资助.
Recent Advances in Hydrothermal Synthesis of Low Dimensional Boron Nitride Nanostructures
Received date: 2018-11-07
Online published: 2018-12-14
Supported by
Project supported by the National Key R&D Project from Ministry of Science and Technology of China (No. 2017YFB0406200) and R&D Funds for basic Research Program of Shenzhen (No. JCYJ20150831154213681).
作为一种宽禁带绝缘材料,氮化硼由于其高导热性、强化学惰性和高热稳定性在热界面材料、光催化和电催化以及储能材料方面引起了广泛的研究兴趣.低维氮化硼纳米结构,如二维纳米片、一维纳米管、纳米棒、纳米线、零维纳米球和量子点等,具有高热导率(600 W/mK)和超宽带隙(5~6 eV),在高导热复合材料、热电材料及电子封装材料等领域具有很好的应用前景,其制备技术及相关性能研究是近年来材料科学领域的热点之一.主要详述了目前水热法制备低维氮化硼(BN)纳米结构的研究进展及存在的问题,并指出深入研究合成机理、研发新型水热制备方法将是今后本领域的重点研究方向.
王海旭 , 杨光 , 程天舒 , 王宁 , 孙蓉 , 汪正平 . 水热法制备低维氮化硼纳米结构的研究进展[J]. 化学学报, 2019 , 77(4) : 316 -322 . DOI: 10.6023/A18110456
As an ultra-wide bandgap insulating material, boron nitride has attracted intense interest due to its high thermal conductivity, high chemical and thermal stability as well as their applications in thermal interface materials, photo/electro-catalysis, and energy storage. As for the low dimensional boron nitride nanostructures, e.g., nanosheets, nanotubes, nanorods, nanowires, nanospheres, and quantum dots, the high thermal conductivity (600 W/mK) and the ultra-large bandgap (5~6 eV) make them the promising candidate for thermal conductive composites, thermoelectric materials and electronic packaging materials, which gives rise to the hot research topic on the synthesis and properties of the boron nitride nanostructures. In this review, the recent advances in the hydrothermal synthesis of boron nitride nanostructures will be fully discussed, and the remarks on the issues need to be addressed, the comprehensive understanding of the mechanism and the new approaches for the hydrothermal synthesis will be proposed in the end.
[1] Zeng, X.; Sun, J.; Yao, Y.; Sun, R.; Xu, J. B.; Wong, C. P. ACS Nano 2017, 11, 5167.
[2] Zhan, Y.; Yan, J.; Wu, M.; Guo, L.; Lin, Z.; Qiu, B.; Chen, G.; Wong, K. Y. Talanta 2017, 174, 365.
[3] Butler, S. Z.; Hollen, S. M.; Cao, L. Y.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J. X.; Ismach, A. F.; Johnston-Halperin, E.; Kuno, M.; Plashnitsa, V. V.; Robinson, R. D.; Ruoff, R. S.; Salahuddin, S.; Shan, J.; Shi, L.; Spencer, M. G.; Terrones, M.; Windl, W.; Goldberger, J. E. ACS Nano 2013, 7, 2898.
[4] Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Chem. Rev. 2013, 113, 3766.
[5] Tan, X. Y.; Yang, S. Y.; Li, H. J. Acta Chim. Sinica 2017, 75, 271. (谭晓宇, 杨少延, 李辉杰, 化学学报, 2017, 75, 271.)
[6] Rubio, A.; Corkill, J. L.; Cohen, M. L. Phys. Rev. B 1994, 49, 5081.
[7] Li, L.; Jia, G. X.; Wang, X. X.; Wu, T. W.; Song, X. W.; An, S. L. Acta Chim. Sinica 2017, 75, 284. (李磊, 贾桂霄, 王晓霞, 吴铜伟, 宋希文, 安胜利, 化学学报, 2017, 75, 284.)
[8] Chopra, N. G.; Luyken, R. J.; Cherrey, K.; Crespi, V. H.; Cohen, M. L.; Louie, S. G.; Zettl, A. Science 1995, 269, 966.
[9] Loiseau, A.; Willaime, F.; Demoncy, N.; Hug, G.; Pascard, H. Phys. Rev. Lett. 1996, 76, 4737.
[10] Nag, A.; Raidongia, K.; Hembram, K. P. S. S.; Datta, R.; Waghmare, U. V.; Rao, C. N. R. ACS Nano 2010, 4, 1539.
[11] Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H.-Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Science 2011, 331, 568.
[12] Lin, Y.; Connell, J. W. Nanoscale 2012, 4, 6908.
[13] Pakdel, A.; Bando, Y.; Golberg, D. Chem. Soc. Rev. 2014, 43, 934.
[14] E, S. F.; Long, X. Y.; Li, C. W.; Geng, R. J.; Han, D. B.; Lu, W. B.; Yao, Y. G. Chem. Phys. Lett. 2017, 687, 307.
[15] Zhang, Z. H.; Zhao, X. F.; Sun, H. B. J. Ceramics 2018, 39, 244. (张振昊, 赵晓帆, 孙海滨, 陶瓷学报, 2018, 39, 244.)
[16] Pakdel, A.; Bando, Y.; Golberg, D. Chem. Soc. Rev. 2014, 43, 934.
[17] Yuan, S. D.; Xiong, K.; Hu, K. P.; Zhang, Y. H.; Luo, Y.; Jiang, G. D. J. Mater. Eng. 2013, 10, 53. (袁颂东, 熊坤, 胡昆鹏, 张运华, 罗意, 江国栋, 材料工程, 2013, 10, 53.)
[18] Ding, J. H.; Zhao, H. R.; Yu, H. B. 2D Mater. 2018, 5, 045015.
[19] Zheng, Z. Y.; Cox, M.; Li, B. J. Mater. Sci. 2017, 53, 66.
[20] Du, Z. H.; Zeng, X. M.; Zhu, M. M.; Kanta, A.; Liu, Q.; Li, J. Z.; Kong, L. B. Ceram. Int. 2018, 44, 21461.
[21] Wang, N.; Yang, G.; Wang, H.; Yan, C.; Sun, R.; Wong, C.-P. Mater. Today 2018, DOI:10.1016/j.mattod.2018.10.039.
[22] Li, X.; Hao, X.; Zhao, M.; Wu, Y.; Yang, J.; Tian, Y.; Qian, G. Adv. Mater. 2013, 25, 2200.
[23] Alem, N.; Erni, R.; Kisielowski, C.; Rossell, M. D.; Gannett, W.; Zettl, A. Phys. Rev. B 2009, 80, 155425.
[24] Yi, M.; Shen, Z. G.; Zhu, J. Y. Chin. Sci. Bull. 2014, 59, 1794.
[25] Du, M.; Li, X. L.; Wang, A. Z.; Wu, Y. Z.; Hao, X. P.; Zhao, M. W. Angew. Chem., Int. Ed. 2014, 53, 3645.
[26] Zheng, Z. Y.; Cox, M.; Li, B. J. Mater. Sci. 2017, 53, 66.
[27] Liu, C.; Zhang, L.; Li, P.; Chen, Y. A.; Cui, W. W.; Zhang, H. L. J. Mater. Eng. 2016, 44, 122. (刘闯, 张力, 李平, 陈永安, 崔雯雯, 张海林, 材料工程, 2016, 44, 122.)
[28] Hemmi, A.; Bernard, C.; Cun, H.; Roth, S.; Klockner, M.; Kalin, T.; Weinl, M.; Gsell, S.; Schreck, M.; Osterwalder, J.; Greber, T. Rev. Sci. Instrum. 2014, 85, 035101.
[29] Song, L.; Ci, L. J.; Lu, H.; Sorokin, P. B.; Jin, C. H.; Ni, J.; Kvashnin, A. G.; Kvashnin, D. G.; Lou, J.; Yakobson, B. I.; Ajayan, P. M. Nano Lett. 2010, 10, 3209.
[30] Kim, K. K.; Hsu, A.; Jia, X. T.; Kim, S. Min.; Shi, Y. M.; Hofmann, M.; Nezich, D.; Rodriguez-Nieva, J. F.; Dresselhaus, M.; Palacios, T.; Kong, J. Nano Lett. 2011, 12, 161.
[31] He, L. F.; Shirahata, J.; Suematsu, H.; Nakayama, T.; Suzuki, T.; Jiang, W.; Niihara, K. Mater. Lett. 2014, 117, 120.
[32] Kumar, V.; Nikhil, K.; Roy, P.; Lahiri, D.; Lahiri, I. RSC Adv. 2016, 6, 48025.
[33] Liang, D.; Ai, T.; Zhang, H. R.; Yan, X.; Zhou, Y. S. J. Solid Rocket Technol. 2018, 41, 642. (梁丹, 艾涛, 张浩然, 阎鑫, 周友升, 固体火箭技术, 2018, 41, 642.)
[34] Tian, L.; Li, J.; Liang, F.; Chang, S.; Zhang, H.; Zhang, M.; Zhang, S. J. Colloid Interface Sci. 2019, 536, 664.
[35] Yang, G.; Wang, N.; Wang, H. X.; Song, R. In 2018 IEEE 68th Electronic Components, Technology Conference, San Diego, California USA, 2018, pp. 1421~1426.
[36] Lee, R. S.; Gavillet, J.; Lamy de la Chapelle, M.; Loiseau, A.; Cochon, J. L.; Pigache, D.; Thibault, J.; Willaime, F. Phys. Rev. B 2001, 64, 121405.
[37] Li, L. H.; Chen, Y.; Glushenkov, A. M. Nanotechnology 2010, 21, 105601.
[38] Kim, M. J.; Chatterjee, S.; Kim, S. M.; Stach, E. A.; Bradley, M. G.; Pender, M. J.; Sneddon, L. G.; Maruyama, B. Nano Lett. 2008, 8, 3298.
[39] Zhang, X.; Lian, G.; Si, H. B.; Wang, J.; Cui, D. L.; Wang, Q. L. J. Mater. Chem. A 2013, 1, 11992.
[40] Xue, Q.; Zhang, H. J.; Zhu, M. S.; Wang, Z. F.; Pei, Z. X.; Huang, Y.; Huang, Y.; Song, X. F.; Zeng, H. B.; Zhi, C. Y. RSC Adv. 2016, 6, 79090.
[41] Lin, L. X.; Xu, Y. X.; Zhang, S. W.; Ross, I. M.; Ong, A. C. M.; Allwood, D. A. Small 2014, 10, 60.
[42] Fan, L.; Zhou, Y. M.; He, M.; Tong, Y.; Zhong, X.; Fang, J. S.; Bu, X. H. J. Mater. Sci. 2017, 52, 13522.
[43] Peng, D.; Zhang, L.; Li, F. F.; Cui, W. R.; Liang, R. P.; Qiu, J. D. ACS Appl. Mater. Interfaces 2018, 10, 7315.
[44] Xing, H.; Zhai, Q.; Zhang, X.; Li, J.; Wang, E. Anal. Chem. 2018, 90, 2141.
[45] Lei, Z.; Xu, S.; Wan, J.; Wu, P. Nanoscale 2015, 7, 18902.
[46] Li, H.; Tay, R. Y.; Tsang, S. H.; Zhen, X.; Teo, E. H. Small 2015, 11, 6491.
[47] Angizi, S.; Hatamie, A.; Ghanbari, H.; Simchi, A. ACS Appl. Mater. Interfaces 2018, 10, 28819.
[48] Yao, Q. H.; Feng, Y. F.; Rong, M. C.; He, S. G.; Chen, X. Microchim. Acta 2017, 184, 4217.
[49] Huo, B.; Liu, B.; Chen, T.; Cui, L.; Xu, G.; Liu, M.; Liu, J. Langmuir 2017, 33, 10673.
/
〈 |
|
〉 |