荧光核酸适配体功能化氧化石墨烯生物传感器用于快速检测氯霉素
Fluorescent Aptamer-functionalized Graphene Oxide Biosensor for Rapid Detection of Chloramphenicol
Received date: 2018-10-17
Online published: 2019-01-17
Supported by
Project supported by the Scientific Research Fund of Hunan Provincial Education Department (No. 17C0033).
开发了一种无标记和快速的检测方法基于氧化石墨烯(GO)和荧光功能性G-四聚体探针(FGP),可用于定量检测氯霉素(CAP).FGP由氯霉素核酸适配体和富含G碱基的核酸序列组成.核酸适配体用于结合CAP,并且由富含G碱基的核酸序列在K+,Na+离子的作用下形成的G-四聚体,然后与硫磺素T(ThT)结合后用作信号分子.在没有CAP的情况下,FGP通过π-π堆积相互作用被吸附到GO的表面上,阻碍了G-四聚体的形成导致溶液中的荧光强度低.在加入CAP时,FGP的核酸适配体部分可识别并结合CAP以形成复合物,导致其从GO解吸.因此,游离的富含G的碱基序列可以形成G-四聚体结构并与ThT结合,导致溶液的荧光强度增加.我们观察到荧光强度增加与CAP浓度在2~20 nmol/L范围内呈线性关系,检测限为1.45 nmol/L.此外,该检测系统用于检测加标牛奶中的CAP,回收率在93.2%~103.3%之间.这些结果表明,开发的方法可用于有效检测实际样品中的CAP.
卢静荷 , 谭淑珍 , 朱雨清 , 李伟 , 陈天啸 , 王瑶 , 刘陈 . 荧光核酸适配体功能化氧化石墨烯生物传感器用于快速检测氯霉素[J]. 化学学报, 2019 , 77(3) : 253 -256 . DOI: 10.6023/A18100433
A label free and rapid fluorescent method for quantitative detection of chloramphenicol (CAP) based on graphene oxide (GO) fluorescence functional G-quadruplex probe (FGP) was developed. The FGP consisted of a choramphenicol aptamer and a G-rich sequence. The aptamer was used to bind CAP and the G-quadruplex formed by G-rich sequence was employed as a signal reporter after binding to Thioflavin T (ThT). In the absence of CAP, the FGP was absorbed onto the surface of GO through π-π stacking interactions, which restrained the G-rich sequence to form a G-quadruplex structure. Thus, the fluorescent intensity of background was low. In the addition of the CAP, the aptamer part of FGP could recognize and bind CAP to form a target-FGP complex, which led to the desorption of the complex from GO. Therefore, the free G-rich sequence could form G-quadruplex structure and bind to ThT, resulting a increase in the fluorescence intensity of the solution. We observed that the fluorescence increasement of the sensing platform had a linear relationship with the concentrations of CAP in the range of 2~20 nmol/L, and the limit of detection was 1.45 nmol/L. Besides, this detection system was applied for detecting CAP in the spiked milk, the recovery rate was between 93.2%~103.3%. These results indicated that this developed method can be used to efficiently recognize CAP in real samples.
Key words: aptamer; fluorescence; chloramphenicol; G-quadruplex; graphene oxide
[1] Wang, L.; Zhang, Y.; Gao, X.; Duan, Z.; Wang, S. J. Agric. Food Chem. 2010, 58, 3265.
[2] Wang, H.; Zhou, X.; Liu, Y.; Yang, H.; Guo, Q. J. Agric. Food Chem. 2011, 59, 3532.
[3] Webb, S.; Ternes, T.; Gibert, M.; Olejniczak, K. Toxicol. Lett. 2003, 142, 157.
[4] Duan, Y.; Wang, L.; Gao, Z. Talanta 2017, 165, 671.
[5] Tan, Z.; Xu, H.; Li, G. Spectrochim. Acta A 2015, 149, 615.
[6] Pfenning, A. P.; Roybal, J. E.; Rupp, H. S.; Turnipseed, S. B.; Gonzales, S. A.; Hurlbut, J. A. J. AOAC Int. 2000, 83, 26.
[7] Wang, L.; Hai, Y.; Zhang, C. Anal. Chim. Acta 2008, 619, 54.
[8] Kawalski, D.; Pobo?y, E.; Trojanowicz, M. J. Autom. Methods Manag. Chem. 2011, 8565, 143416.
[9] Ramos, M.; Muñoz, P.; Aranda, A.; Rodriquez, I.; Diaz, R.; Blanca, J. J. Chromatogr. B 2003, 791, 31.
[10] Tian, H. Chemosphere 2011, 83, 349.
[11] Kolosova, A. Y.; Samsonova, J. V.; Egorova, M. Food Agr. Immunol. 2000, 12, 115.
[12] Byzova, N. A.; Zvereva, E. A.; Zherdev, A. V.; Eremin, S. A.; Dzantiev, B. B. Talanta 2010, 81, 843.
[13] He, J. L.; Zhu, S. L.; Wu, P.; Li, P. P.; Li, T.; Cao, Z. Biosens. Bioelectron. 2014, 60, 112.
[14] Chen, M.; Gan, N.; Zhang, H. Microchim. Acta 2016, 183, 1099.
[15] Gao, H.; Pan, D.; Gan, N. Microchim. Acta 2015, 182, 2551.
[16] Miao, Y. B.; Ren, H. X.; Gan, N. Anal. Chim. Acta 2016, 929, 49.
[17] Miao, Y. B.; Gan, N.; Li, T. H.; Zhang, H. R.; Cao, Y. T.; Jiang, Q. L. Sensor. Actuat. B-Chem. 2015, 220, 679.
[18] Sharma, R.; Ragavan, K. V.; Raghavarao, K. S. M. S. Biotechnology and Biochemical Engineering, Springer, Sin-gapore, 2016.
[19] Zhao, K.; Hao, Y.; Zhu, M.; Cheng, G. Acta Chim. Sinica 2018, 76, 168(in Chinese). (赵克丽, 郝莹, 朱墨, 程国胜, 化学学报, 2018, 76, 168.)
[20] Sun, H.; He, Q.; Yin, S.; Xu, K. Chin. J. Chem. 2017, 35, 1627.
[21] Yang, X.; Cai, H.; Bao, M.; Yu, J.; Lu, J.; Li, Y. Chin. J. Chem. 2017, 35, 1549.
[22] Chen, X. J.; Wang, Y. Z.; Zhang, Y. Y.; Chen, Z. H.; Liu, Y.; Li, Z. L.; Li, J. H. Anal. Chem. 2014, 86, 4278.
[23] Liu, X.; Wang, F.; Aizen, R. J. Am. Chem. Soc. 2013, 135, 11832.
[24] Yi, M.; Yang, S.; Peng, Z. Y.; Liu, C. H.; Li, J. S.; Zhong, W. W.; Yang, R. H.; Tan, W. H. Anal. Chem. 2014, 86, 3548.
[25] Zhang, P.; Gong, J. L.; Zeng, G. M.; Deng, C. H.; Yang, H. C.; Liu, H. Y.; Huan, S. Y. Chem. Eng. J. 2017, 322, 657.
[26] Luu, K. N.; Phan, A. T.; Kuryavyi, V. J. Am. Chem. Soc. 2006, 128, 9963.
[27] Guo, Y.; Sun, Y.; Shen, X.; Chen, X.; Yao, Y. R.; Xie, Y. F.; Hu, J. M.; Pei, R. J. Anal. Methods 2015, 7, 9615
[28] Vummidi, B. R.; Alzeer, J.; Luedtke, N. W. ChemBioChem 2013, 14, 540.
[29] Zhu, L. N.; Wu, B.; Kong, D. M. Nucleic Acids Res. 2013, 41, 4324.
[30] Huang, X. X.; Zhu, L. N.; Wu, B. Nucleic Acids Res. 2014, 42, 8719.
[31] Zhang, Q.; Liu, Y. C.; Kong, D. M. Chem. Eur. J. 2015, 21, 13253.
[32] Jiang, H. X.; Liang, Z. Z.; Ma, Y. H. Anal. Chim. Acta 2016, 943, 114.
[33] Mohanty, J.; Barooah, N.; Dhamodharan, V. J. Am. Chem. Soc. 2012, 135, 367.
[34] Zhang, Q. J.; Peng, T.; Chen, D. D. J. Aoac. Int. 2013, 96, 897.
[35] Miao, Y. B.; Ren, H. X.; Gan, N.; Cao, Y. T.; Li, T. H.; Chen, Y. J. Biosens. Bioelectron. 2016, 81, 454.
[36] Fei, X.; Zhao, F.; Li, J. Anal. Chim. Acta 2007, 596, 79.
[37] Gao, H.; Gan, N.; Pan, D. Anal. Methods 2015, 7, 6528.
/
〈 |
|
〉 |