综述

手性高价碘试剂的发展及展望

  • 蔡倩 ,
  • 马浩文
展开
  • 暨南大学药学院 广州 510530
蔡倩,暨南大学药学院研究员.2001年本科毕业于南开大学,2006年从上海有机所获博士学位,之后在密歇根大学癌症研究中心从事博士后研究,2009年加入中科院广州生物医药与健康研究院,2010年担任课题组长,2016年加入暨南大学药学院.蔡倩课题组研究兴趣集中在基于药物活性分子合成的新型串联反应以及不对称反应方法学研究及应用;马浩文,1996年生于湖北省黄石市,2018年本科毕业于山西医科大学药学院,现为暨南大学药学院药物化学专业硕士研究生,主要研究课题为高价碘促进的不对称反应.

收稿日期: 2018-11-21

  网络出版日期: 2019-01-28

基金资助

项目受国家自然科学基金(Nos.21772066,21572229)以及广东省"特支"计划(No.2017TX04R059)资助.

Recent Advances of Chiral Hypervalent Iodine Reagents

  • Cai Qian ,
  • Ma Haowen
Expand
  • College of Pharmacy, Jinan University, Guangzhou 510530

Received date: 2018-11-21

  Online published: 2019-01-28

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21772066, 21572229) and Guangdong Special Support Program (No. 2017TX04R059).

摘要

在过去几十年中,高价碘化学已成为有机化学研究的重要领域.高价碘化合物在多种类型的化学转化中,展现与过渡金属相似的反应性质.而其温和的反应条件、低耗费、环境友好、低毒性等特点,使高价碘化学引起了广泛的研究兴趣,并取得了巨大的进展.手性的高价碘试剂或前体也得以发展并应用于一系列化学计量或催化的不对称反应.近年来,手性高价碘领域研究进展显著,但也存在诸多不足.在本综述中,根据其结构特点以及发展的时间线,对多种类型的手性高价碘试剂和前体做一个总结,这将有助于帮助本领域研究者更好地理解手性高价碘化学的发展以及不足之处.

本文引用格式

蔡倩 , 马浩文 . 手性高价碘试剂的发展及展望[J]. 化学学报, 2019 , 77(3) : 213 -230 . DOI: 10.6023/A18110470

Abstract

Hypervalent iodine chemistry has arose as an important field in organic chemistry in the past decades. Hypervalent iodine compounds, with reactivities similarly to transition metals in many different types of transformations, have attracted broad interests in organic community due to their practical advantages in the mild conditions, low costs, environmental benign and low toxicity. Great progresses have been made in this field. Chiral hypervalent iodine reagents or precursors have also been developed and utilized in a variety of asymmetric reactions in a stoichiometric or catalytic way. Important advances have been witnessed in the field of chiral hypervalent iodine chemistry in recent years. However, great limitations still exist. In this review, we have made a summary of different types of chiral hypervalent iodine reagents and precursors according to the characteristics of these compounds and the timeline. It may be helpful for the researchers to better understand the development and limitations of chiral hypervalent iodine chemistry.

参考文献

[1] For books, see:(a) Chemistry of Hypervalent Compounds, Ed.:AKiba, K. Y., Wiley-VCH, New York, 1999.
(b) Zhdankin, V. V. Hypervalent Iodine Chemistry:Preparation, Structure and Syn-thetic Application of Polyvalent Iodine Compounds, John Wiley & Sons Ltd., New York, 2014.
(c) Iodine Chemistry And Applications, Ed.:Kaiho, T., John Wiley & Sons Ltd., New York, 2015.
(d) Hypervalent Iodine Chemistry:Modern Developments in Organic Synthesis, Ed.:Wirth, T., Springer, 2003.
[2] For recent reviews, see:(a) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
(b) Duan, Y.; Jiang, S.; Han, Y.; Sun, B.; Zhang, C. Chin. J. Org. Chem. 2016, 36, 1973(in Chinese). (段亚南, 姜山, 韩永超, 孙博, 张弛, 有机化学, 2016, 36, 1973.)
(c) Ma, J.; Chen, L.; Yuan, Z.; Cheng, H. Chin. J. Org. Chem. 2018, 38, 1586(in Chinese). (马姣丽, 陈立成, 袁中文, 程辉成, 有机化学, 2018, 38, 1586.)
[3] For selected recent reviews, see:(a) Flores, A.; Cots, E.; Bergès, J.; Muñiz, K. Adv. Synth. Catal. 2019, 361, DOI:10.1002/adsc. 201800521.
(b) Martín Romero, R.; Wöste, T. H.; Muñiz, K. Chem. Asian J. 2014, 9, 972.
(c) Singh, F. V.; Wirth, T. Chem. Asian J. 2014, 9, 950.
(d) Harned, A. M. Tetrahedron Lett. 2014, 55, 4681.
(e) Parra, A.; Reboredo, S. Chem. Eur. J. 2013, 19, 17244.
[4] Liang, H.; Ciufolini, M. A. Angew. Chem. Int. Ed. 2011, 50, 11849.
[5] Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. J. Am. Chem. Soc. 2005, 127, 12244.
(b) Dohi, T.; Maruyama, A.; Yoshimura, M.; Morimoto, K.; Tohma, H.; Kita, Y. Angew. Chem. Int. Ed. 2005, 44, 6193.
[6] Pribram, R. Justus Liebigs Ann. Chem. 1907, 351, 481.
[7] Imamoto, T.; Koto, H. Chem. Lett. 1986, 967.
[8] Hatzigrigoriou, E.; Varvoglis, A.; Bakola-Christianopoulou, M. J. Org. Chem. 1990, 55, 315.
[9] Xia, M.; Chen, Z.-C. Synth. Commun. 1997, 27, 1321.
[10] Ray Ⅲ, D. G.; Koser, G. F. J. Am. Chem. Soc. 1990, 112, 5672.
[11] Ray Ⅲ D. G.; Koser, G. F. J. Org. Chem. 1992, 57, 1607.
[12] Tohma, H.; Takizawa, S.; Watanabe, H.; Fukuoka, Y.; Maegawa, T.; Kita, Y. J. Org. Chem. 1999, 64, 3519.
[13] Rabah, G. A.; Koser, G. F. Tetrahedron Lett. 1996, 37, 6453.
[14] (a) Wirth, T.; Hirt, U. H. Tetrahedron Asymmetry 1997, 8, 23.
(b) Hirt, U. H.; Spingler, B.; Wirth, T. J. Org. Chem. 1998, 63, 7674.
(c) Hirt, U. H.; Schuster, M. F. H.; French, A. N.; Wiest, O. G.; Wirth, T. Eur. J. Org. Chem. 2001, 1569.
[15] Mizar, P.; Laverny, A.; EI-Sherbini, M.; Farid, U.; Brown, M.; Malmedy, F.; Wirth, T. Chem. Eur. J. 2014, 20, 9910.
[16] Hempel, C.; Maichle-Mössmer, C.; Pericàs, M. A.; Nachtsheim, B. J. Adv. Synth. Catal. 2017, 359, 2941.
[17] Fujita, M.; Okuno, S.; Lee, H. J.; Sugimura, T.; Okuyama, T. Tetrahedron Lett. 2007, 48, 8691.
[18] (a) Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem. Int. Ed. 2010, 49, 2175.
(b) Uyanik, M.; Yasui, T.; Ishihara, K. Tetrahedron 2010, 66, 5841.
[19] (a) Fujita, M.; Yoshida, Y.; Miyata, K.; Wakisaka, A.; Sugimura, T. Angew. Chem. Int. Ed. 2010, 49, 7068.
(b) Fujita, M.; Mori, K.; Shimogaki, M.; Sugimura, T. Org. Lett. 2012, 14, 1294.
(c) Shimogaki, M.; Fujita, M.; Sugimura, T. Eur. J. Org. Chem. 2013, 7128.
(d) Takesue, T.; Fujita, M.; Sugimura, T.; Akutsu, H. Org. Lett. 2014, 16, 4634.
[20] Fujita, M.; Wakita, M.; Sugimura, T. Chem. Commun. 2011, 47, 3983.
[21] (a) Shimogaki, M.; Fujita, M.; Sugimura, T. Angew. Chem. Int. Ed. 2016, 55, 15797.
(b) Shimogaki, M.; Fujita, M.; Sugimura, T. J. Org. Chem. 2017, 82, 11836.
[22] Röben, C.; Souto, J. A.; González, Y.; Lishchynskyi, A.; Muñiz, K. Angew. Chem. Int. Ed. 2011, 50, 9478.
[23] Muñiz, K.; Barreiro, L.; Romero, R. M.; Martínez, C. J. Am. Chem. Soc. 2017, 139, 4354.
[24] (a) Haubenreisser, S.; Wöste, T. H.; Martínez, C.; Ishihara, K.; Muñiz, K. Angew. Chem. Int. Ed. 2016, 55, 413.
(b) Wöste, T. H.; Muñiz, K. Synthesis 2016, 48, 816.
[25] (a) Farid, U.; Wirth, T. Angew. Chem. Int. Ed. 2012, 51, 3462.
(b) Mizar, P.; Niebuhr, R.; Hutchings, M.; Farooq, U.; Wirth, T. Chem. Eur. J. 2016, 22, 1614.
[26] Gelis, C.; Dumoulin, A.; Bekkaye, M.; Neuville, L.; Masson, G. Org. Lett. 2017, 19, 278.
[27] (a) Kong, W.; Feige, P.; de Haro, T.; Nevado, C. Angew. Chem. Int. Ed. 2013, 52, 2469.
(b) Pluta, R.; Krach, P. E.; Cavallo, L.; Falivene, L.; Rueping, M. ACS Catal. 2018, 8, 2582.
[28] Wu, H.; He, Y.-P.; Xu, L.; Zhang, D.-Y.; Gong, L.-Z. Angew. Chem. Int. Ed. 2014, 53, 3466.
[29] Zhang, D.-Y.; Xu, L.; Wu, H.; Gong, L.-Z. Chem. Eur. J. 2015, 21, 10314.
[30] Cao, Y.; Zhang, X.; Lin, G.; Zhang-Negrerie, D.; Du, Y. Org. Lett. 2016, 18, 5580.
[31] Farid, U.; Malmedy, F.; Claveau, R.; Albers, C.; Wirth, T. Angew. Chem. Int. Ed. 2013, 52, 7018.
[32] Brown, M.; Kumar, R.; Rehbein, J.; Wirth, T. Chem. Eur. J. 2016, 22, 4030.
[33] Banik, S. M.; Medley, J. W.; Jacobsen, E. N. J. Am. Chem. Soc. 2016, 138, 5000.
[34] Banik, S. M.; Medley, J. W.; Jacobsen, E. N. Science 2016, 353, 51.
[35] Zhou, B.; Haj, M. K.; Jacobsen, E. N.; Houk, K. N.; Xue, X.-S. J. Am. Chem. Soc. 2018, 140, 15206.
[36] Mennie, K. M.; Banik, S. M.; Reichert, E. C.; Jacobsen, E. N. J. Am. Chem. Soc. 2018, 140, 4797.
[37] Qurban, J.; Elsherbini, M.; Wirth, T. J. Org. Chem. 2017, 82, 11872.
[38] Hashimoto, T.; Shimazaki, Y.; Omatsu, Y.; Maruoka, K. Angew. Chem. Int. Ed. 2018, 57, 7200.
[39] Zhdandin, V. V.; Smart, J. T.; Zhao, P.; Kiprof, P. Tetrahedron Lett. 2000, 41, 5299.
[40] Ladziata, U.; Carlson, J.; Zhdankin, V. V. Tetrahedron Lett. 2006, 47, 6301.
[41] Altermann, S. M.; Richardson, R. D.; Page, T. K.; Schmidt, R. K.; Holland, E.; Mohammed, U.; Paradine, S. M.; French, A. N.; Richter, C.; Bahar, A. M.; Witulski, B.; Wirth, T. Eur. J. Org. Chem. 2008, 5315.
[42] Farooq, U.; Schäfer, S.; Ali Shah, A.-U.-H.; Freudendahl, D. M.; Wirth, T. Synthesis 2010, 1023.
[43] Volp, K. A.; Harned, A. M. Chem. Commun. 2013, 49, 3001.
[44] Boppisetti, J. K.; Birman, V. B. Org. Lett. 2009, 6, 1221.
[45] Guilbault, A.-A.; Basdevant, B.; Wanie, V.; Legault, C. Y. J. Org. Chem. 2012, 77, 11283.
[46] Rodríguez, A.; Moran, W. J. Synthesis 2012, 44, 1178.
[47] Uyanik, M.; Yasui, T.; Ishihara, K. Angew. Chem. Int. Ed. 2013, 52, 9215.
[48] Uyanik, M.; Sasakura, N.; Mizuno, M.; Ishihara, K. ACS Catal. 2017, 7, 872.
[49] Uyanik, M.; Yasui, Y.; Ishihara, K. J. Org. Chem. 2017, 82, 11946.
[50] Jain, N.; Xu, S.; Ciufolini, M. A. Chem. Eur. J. 2017, 23, 4542.
[51] Molnár, I. G.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 5004.
[52] Scheidt, F.; Schäfer, M.; Sarie, J. C.; Doniliuc, C. G.; Molloy, J. J.; Gilmour, R. Angew. Chem. Int. Ed. 2018, 57, 16431.
[53] Ochiai, M.; Takaoka, Y.; Masaki, Y. J. Am. Chem. Soc. 1990, 112, 5677.
[54] Ochiai, M.; Kitagawa, Y.; Takayama, N.; Takaoka, Y.; Shiro, M. J. Am. Chem. Soc. 1999, 121, 9234.
[55] Deng, Q.-H.; Wang, J.-C.; Xu, Z.-J.; Zhou, C.-Y.; Che, C.-M. Synthesis 2011, 18, 2959.
[56] Quideau, S.; Lyvinec, G.; Marguerit, M.; Bathany, K.; Ozanne-Beaudenon, A.; Buffeteau, T.; Cavagnat, D.; Chénedé, A. Angew. Chem. Int. Ed. 2009, 48, 4605.
[57] Bosset, C.; Coffinier, R.; Peixoto, P. A.; Assal, M. E.; Miqueu, K. M.; Sotiropoulos, J.-M. Pouységu, L.; Quideau, S. Angew. Chem. Int. Ed. 2014, 53, 9860.
[58] Companys, S.; Peixoto, P. A.; Bosset, C.; Chassaing, S.; Miqueu, K.; Sotiropoulos, J.-M.; Pouységu, L.; Quideau, S. Chem. Eur. J. 2017, 23, 13309.
[59] (a) Brenet, S.; Berthiol, F.; Einhorn, J. Eur. J. Org. Chem. 2013, 8094.
(b) Brenet S.; Minozzi, C.; Clarens, B.; Amiri, L.; Berthiol, F. Synthesis 2015, 47, 3859
[60] Dohi, T.; Sasa, H.; Miyazaki, K.; Fujitake, M.; Takenaga, N.; Kita, Y. J. Org. Chem. 2017, 82, 11954.
[61] Levitre, G.; Dumoulin, A.; Retailleau, P.; Panossian, A.; Leroux, F. R.; Masson, G. J. Org. Chem. 2017, 82, 11877.
[62] Xue, J.-H.; Zhou, Q.-L. Acta Chim. Sinica 2014, 72, 778(in Chinese). (谢建华, 周其林, 化学学报, 2014, 72, 778.)
[63] Dohi, T.; Maruyama, A.; Takenaga, N.; Senami, K.; Minamitsuji, Y.; Fujioka, H.; Caemmerer, S. B.; Kita, Y. Angew. Chem. Int. Ed. 2008, 47, 3787.
[64] Dohi, T.; Takenaga, N.; Nakae, T.; Toyoda, Y.; Yamasaki, M.; Shiro, M.; Fujioka, H.; Maruyama, A.; Kita, Y. J. Am. Chem. Soc. 2013, 135, 4558.
[65] Yu, J.; Cui, J.; Hou, X.-S.; Liu, S.-S.; Gao, W.-C.; Jiang, S.; Tian, J.; Zhang, C. Tetrahedron:Asymmetry 2011, 22, 2039.
[66] Ding, Q.; He, H.; Cai, Q. Org. Lett. 2018, 20, 4554.
[67] Wang, Y.; Yuan, H.; Lu, H.; Zheng, W.-H. Org. Lett. 2018, 20, 2555.
[68] Murray, S. J.; Müller-Bunz, H.; Ibrahim, H. Chem. Commun. 2012, 48, 6268.
[69] Ogasawara, M.; Sasa, H.; Hu, H.; Amano, Y.; Nakajima, H.; Takenaga, N.; Nakajima, K.; Kita, Y.; Takahashi, T.; Dohi, T. Org. Lett. 2017, 19, 4102.

文章导航

/