收稿日期: 2018-12-06
网络出版日期: 2019-02-14
基金资助
项目受国家自然科学基金(No.21673061)和哈尔滨工业大学城市水资源与水环境国家重点实验室开放基金项目(No.QAK201503)资助.
Characteristics of Some Typical Inorganic Oxyacid Free Radicals
Received date: 2018-12-06
Online published: 2019-02-14
Supported by
Project supported by the National Natural Science Foundation of China (No. 21673061) and the Open Project of the State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (No. QAK201503).
碳酸自由基、硝酸自由基、磷酸自由基和硫酸自由基是化学反应的重要中间体,都具有氧化性,对污染物在自然和人为环境中的迁移转化会产生重要的影响.文中较为详细地介绍这几种自由基的电极电位、产生方式、检测方法及与有机物的反应方式.总结四种自由基的特性及与有机物的反应方式可发现,四种自由基和羟自由基电极电位不同,导致它们和有机物反应速率的不同;碳酸自由基并不是羟自由基去除剂,对于一些容易被氧化的化合物,碳酸自由基氧化效果比羟自由基好;四种自由基均可由羟自由基转化而来,并且这四种自由基和羟自由基与有机物反应方式基本一致,都通过电子转移、夺氢和加成的方式进行.可以预测四种自由基和羟自由基降解有机物的机理将非常相似,今后应研究四种自由基与羟自由基相互转化的规律,以及与代表性有机物的反应机理.
王晨 , 陈瑞 , 宋林 , 张乃东 . 典型无机含氧酸自由基的特性[J]. 化学学报, 2019 , 77(3) : 205 -212 . DOI: 10.6023/A18120486
Carbonate radical, nitrate radical, phosphate radical and sulfate radical are all important intermediates of chemical reactions with oxidizing ability. They have a significant effect on the transfer of pollutants in natural environment. In this review, the redox potential, modes of production, detection methods of these radicals and the mechanisms of their reactions with organic compounds are introduced. It can be found that:these four radicals have different reaction rates with organic compounds because of their various redox potential; Carbonate radical is not a scavenger of hydroxyl radical. For some easily oxidized compounds, carbonate radical shows higher oxidizing ability than hydroxyl radical; Hydroxyl radicals can be converted into other four types of radicals. Meanwhile, these four types of radicals react with organic matters by electron transfer, hydrogen abstraction and addition, which is basically consistent with hydroxyl radicals. It can be predicted that the mechanism of organic compounds degradation by these four types of free radicals is similar with that of hydroxyl radicals. In the future, it is necessary to study the mutual conversion principles between these free radicals and hydroxyl radicals and the degradation mechanism of these radicals when reacting with some representative organic compounds.
[1] Stenman, D.; Carlsson, M.; Reitberger, T. J. Wood. Chem. Technol. 2005, 24, 83.
[2] Canonica, S.; Kohn, T.; Mac, M.; Real, F. J.; Wirz, J.; Von, G. U. Environ. Sci. Technol. 2005, 39, 9182.
[3] Dell'Arciprete, M. L.; Soler, J. M.; Santos-Juanes, L.; Arques, A.; Mártire, D. O.; Furlong, J. P.; Gonzalez, M. C. Water Res. 2012, 46, 3479.
[4] Medinas, D. B.; Cerchiaro, G.; Trindade, D. F.; Augusto, O. Iubmb. Life. 2007, 59, 255.
[5] Lu, C.; Lin, J. M. Catal. Today. 2004, 89, 343.
[6] Ghalei, M.; Ma, J.; Schmidhammer, U.; Vandenborre, J.; Fattahi, M.; Mostafavi, M. J. Phys. Chem. B 2016, 120, 2434.
[7] Wu, C.; Linden, K. G. Water Res. 2010, 44, 3585.
[8] Liu, Y.; He, X.; Duan, X.; Fatta-Kassinos, D.; Dionysiou, D. D. Water Res. 2016, 95, 195.
[9] Carena, L.; Vione, D. Environ. Chem. Lett. 2016, 14, 183.
[10] Busset, C.; Mazellier, P.; Sarakha, M.; Laat, J. D. J. Photoch. Photobio. A 2007, 185, 127.
[11] Zhao, T. Q.; Li, P.; Tai, C.; She, J. P.; Yin, Y. G.; Qi, Y. A.; Zhang, G. C. J. Hazard. Mater. 2018, 346, 42.
[12] Bonini, M. G.; Radi, R.; Ferrersueta, G.; Ferreira, A. M.; Augusto, O. J. Biol. Chem. 1999, 274, 10802.
[13] Chen, J. W.; Hu, B.; Qin, H. Y.; Ao, J. P.; Zhang, J.; Zhu, Z. Q. J. Radiat. Res. Radiat. 2006, 24, 137(in Chinese). (陈季武, 胡斌, 秦海燕, 敖军平, 张军, 朱振勤, 辐射研究与辐射工艺学报, 2006, 24, 137.)
[14] Larson, R. A.; Zepp, R. G. Environ. Toxicol. Chem. 2010, 7, 265.
[15] Huang, J. P.; Mabury, S. A. Chemosphere 2000, 41, 1775.
[16] Karmakar, S.; Datta, A. J. Phys. Chem. B 2017, 121, 7621.
[17] Zhang, R.; Sun, P.; Boyer, T. H.; Zhao, L.; Huang, C. Environ. Sci. Technol. 2015, 49, 3056.
[18] Huang, J.; Mabury, S. A. Environ. Toxicol. Chem. 2000, 19, 1501.
[19] Mabury, S. A.; Crosby, D. G. J. Agr. Food. Chem. 1996, 44, 1920.
[20] Mazellier, P.; Leroy, É.; De Laat, J.; Legube, B. New J. Chem. 2002, 26, 1784.
[21] Liu, T.; Yin, K.; Liu, C.; Luo, J.; Crittenden, J.; Zhang, W.; Luo, S.; He, Q.; Deng, Y.; Liu, H.; Zhang, D. Water Res. 2018, 147, 204.
[22] Mazellier, P.; Busset, C.; Delmont, A.; De Laat, J. Water Res. 2007, 41, 4585.
[23] Li, Y.; Li, L.; Chen, Z. X.; Zhang, J.; Gong, L.; Wang, Y. X.; Zhao, H. Q.; Mu, Y. Chemosphere 2018, 192, 372.
[24] Poskrebyshev, G. A.; Neta, P.; Huie, R. E. J. Geophys. Res-Atmos. 2001, 106, 4995.
[25] Wei, B.; Sun, J.; Mei, Q.; He, M. X. Comput. Theor. Chem. 2018, 1129, 1.
[26] Liebmann, J.; Karu, E.; Sobanski, N. Atmos. Chem. Phys. 2018, 18, 1.
[27] Maranzana, A.; Ghigo, G.; Tonachini, G. Atmos. Environ. 2017, 167, 181.
[28] Maguta, M. M.; Stenstrom, Y. H.; Nielsen, C. J. J. Phys. Chem. A 2016, 120, 6970.
[29] Musat, R.; Denisov, S. A.; Marignier, J. L.; Mostafavi, M. J. Phys. Chem. B 2018, 122, 2121.
[30] de Sémainville, P. G.; Hoffmann, D.; George, C.; Herrmann, H. Phys. Chem. Chem. Phys. 2007, 9, 958.
[31] Jin, S.; Bi, W.; Li, S.; Dong, W.; Chen, J. J. Phys. Chem. A 2017, 121, 3461.
[32] Exner, M.; Herrmann, H.; Zellner, R. Berichte Der Bunsengesellschaft Für Physikalische Chemie. 2010, 96, 470.
[33] Mezyk, S. P.; Cullen, T. D.; Rickman, K. A.; Mincher, B. J. Int. J. Chem. Kinet. 2017, 49, 635.
[34] Katsumura, Y.; Jiang, P. Y.; Nagaishi, R.; Oishi, T.; Ishigure, K.; Yoshida, Y. J. Phys. Chem (United States). 1991, 95, 4435.
[35] Wine, P. H.; Iii, R. L. M.; Thorn, R. P. J. Phys. Chem. 1988, 92, 1156.
[36] Jarke, F. H.; Ashford, N. A. J. Chem. Phys. 1975, 62, 2923.
[37] Wayne, R. P.; Barnes, I.; Biggs, P.; Burrows, J. P. Atmos. Environ. A 1991, 25, 1.
[38] Wan, L. K.; Peng, J.; Lin, M. Z.; Muroya, Y.; Katsumura, Y.; Fu, J. Y. Radiat. Phys. Chem. 2012, 81, 524.
[39] Nguyen, T. L.; Park, J.; Lee, K.; Song, K.; Barker, J. R. J. Phys. Chem. A 2011, 115, 4894.
[40] Neta, P.; Huie, R. E. Meat Technology 1986, 90, 4644.
[41] Umschlag, T.; Zellner, R.; Herrmann, H. Phys. Chem. Chem. Phys. 2002, 4, 2975.
[42] Dong, W. B.; Zhu, C. Z.; Fang, H. J.; Ouyang, B.; Zhang, R. X.; Hou, H. Q. Acta Chim. Sinica 2005, 63, 2147(in Chinese). (董文博, 朱承驻, 房豪杰, 欧阳彬, 张仁熙, 侯惠奇, 化学学报, 2005, 63, 2147.)
[43] Ito, O.; Seiji, A.; Masashi, I. J. Org. Chem. 1989, 54, 2436.
[44] Alfassi, Z. B.; Padmaja, S.; Neta, P.; Huie, R. E. J. Phys. Chem. 1993, 97, 3780.
[45] Mártire, D. O.; Gonzalez, C. Prog. React. Kinet. Mec. 2001, 26, 201.
[46] Brusa, M. A.; Grela, M. A. Phys. Chem. Chem. Phys. 2003, 5, 3294.
[47] Criado, S.; Marioli, J. M.; Allegretti, P. E.; Furlong, J.; Nieto, F. J. R.; Mártire, D. O.; Garcia, N. A. J. Photochem. Photobiol. B 2001, 65, 74.
[48] Kumar, M. R.; Adinarayana, M. J. Chem. Sci. 2000, 112, 551.
[49] Kumar, M. R.; Rao, M. T.; Adinarayana, M. Indian J. Biochem. Bio. 2000, 37, 13.
[50] Huber, J. R.; Hayon, E. J. Phys. Chem. 1968, 71, 3820.
[51] Black, E. D.; Hayon, E. J. Phys. Chem. 1970, 74, 3199.
[52] Ma, J.; Schmidhammer, U.; Mostafavi, M. J. Phys. Chem. B 2015, 119, 7180.
[53] Caregnato, P.; Bertolotti, S. G.; Gonzalez, M. C.; Mártire, D. O. Photochem. Photobiol. 2005, 81, 1526.
[54] Meng, J.; Xiong, X.; Zhang, X.; Xu, Y. Appl. Surf. Sci. 2018, 437, 859.
[55] Subramanian, P. J.; Rajaram, J.; Ramakrishnan, V. Indian J. Chem. 1991, 30, 913.
[56] Maruthamuthu, P.; Taniguchi, H. J. Phys. Chem. (United States) 1977, 81, 1944.
[57] Maruthamuthu, P. J. Chem. Soc., Faraday Trans. 11985, 81, 1979.
[58] Villata, L. S.; Gonzalez, M. C.; Mártire, D. O. Int. J. Chem. Kinet. 2010, 42, 391.
[59] Rosso, J. A.; Allegretti, P. E.; Mártire, D. O.; Gonzalez, M. C. J. Chem. Soc., Perkin Trans. 21999, 2, 205.
[60] Neta, P.; Huie, R. E.; Ross, A. B. J. Phys. Chem. Ref. Data 1988, 17, 1027.
[61] Khan, J. A.; He, X.; Khan, H. M.; Dionysiou, D. D. Chem. Eng. J. 2013, 218, 376.
[62] Wang, A. J.; He, J. M.; Kong, L. N.; Zhang, N. D. Res. Chem. Intermed. 2017, 43, 2175.
[63] Oncu, N. B.; Mercan, N.; Balcioglu, I. A. Chem. Eng. J. 2015, 259, 972.
[64] Liang, Q.; Duan, Y. M.; Wu, B. B.; Zhang, N. D. J. Adv. Oxid. Technol. 2016, 19, 372.
[65] Anipsitakis, G. P.; Dionysiou, D. D. Environ. Sci. Technol. 2004, 38, 3705.
[66] Lou, X. Y.; Guo, Y. G.; Xiao, D. X. Environ. Sci. Pollut. R. 2013, 20, 6317.
[67] Zhang, N. D.; Zhu, Z. J.; Luan, W. L. Acta Chim. Sinica 2011, 69, 2307(in Chinese). (张乃东, 朱正江, 栾万利, 化学学报, 2011, 69, 2307.)
[68] He, J. M.; Kong, L. N.; Liang, Q.; Zhang, N. D. China Environ. Sci. 2016, 36, 2638(in Chinese). (贺俊梅, 孔令娜, 梁倩, 张乃东, 中国环境科学, 2016, 36, 2638.)
[69] Wang, B.; Li, J.; Mo, Z. P.; Xian, B. Environ. Eng. 2012, 30, 53(in Chinese). (王兵, 李娟, 莫正平, 鲜波, 环境工程, 2012, 30, 53.)
[70] Liu, H. X.; Zhang, N. D.; Zhu, Z. J. Chin. Sci. Bull. 2012, 57, 3493(in Chinese). (刘衡锡, 张乃东, 朱正江, 科学通报, 2012, 57, 3493.)
[71] Liu, C.; Wu, B.; Chen, X. E. Chem. Eng. J. 2018, 335, 865.
[72] Tang, Y.; Thorn, R. P.; Iii, R. L. M. J. Photoch. Photobio. A 1988, 44, 243.
[73] Morimoto, S.; Ito, T.; Fujita, S. I. Chem. Phys. Lett. 2008, 461, 300.
[74] Huang, Y. F.; Huang, Y. H. J. Hazard. Mater. 2009, 162, 1211.
[75] Clément, J. L.; Gilbert, B. C.; Ho, W. F.; Jackson, N. D.; Newton, M. S.; Silvester, S.; Timmins, G. S.; Tordo, P.; Whitwood, A. C. J. Chem. Soc., Perkin Trans. 21998, 8, 1715.
[76] Chawla, O. P.; Fessenden, R. W. J. Phys. Chem. 1975, 79, 2693.
/
〈 |
|
〉 |