综述

可控释放一氧化碳的纳米材料及其生物医学应用

  • 张晓蕾 ,
  • 田甘 ,
  • 张潇 ,
  • 王清 ,
  • 谷战军
展开
  • a 山东科技大学 土木工程与建筑学院 青岛 266590;
    b 中国科学院高能物理研究所 中国科学院纳米生物效应与安全性重点实验室 北京 100049;
    c 第三军医大学第一附属医院病理学研究所&西南癌症中心 肿瘤免疫病理学教育部重点实验室 重庆 400038
张晓蕾,2016年本科毕业于山东科技大学土木工程与建筑学院;同年进入山东科技大学,攻读硕士学位;2017年7月,进入中国科学院高能物理研究所纳米生物效应与安全性重点实验室联合培养.主要研究的方向是纳米材料的合成及生物医学应用;田甘,副教授,博士.2015年毕业于四川大学化学学院,获得博士学位.研究生期间以“协同创新培养计划”联培于中科院纳米生物效应与安全性重点实验室,主要研究方向为荧光上转换纳米材料的可控合成及其生物医学研究.目前从事无机纳米材料的可控合成及其生物效应研究.主要研究方向为气体信使小分子的可控输运及其在肿瘤治疗中的应用;王清,博士生导师,主要从事固体力学,复合材料力学以及纳米压印技术方面的研究;谷战军,博士生导师,国家优秀青年基金获得者.主要从事新型纳米材料的可控合成及其生物效应研究.

收稿日期: 2018-12-17

  网络出版日期: 2019-02-14

基金资助

项目受国家重点基础研究发展计划(Nos.2016YFA0201600,2016YFA0202104),国家自然科学基金(Nos.51822207,51772292,31571015,11621505,11435002,81703071)及中国科学院青年创新促进会基金(No.2013007),重庆市基础与前沿研究项目(No.cstc2016jcyjA0279)、西南医院军事医学科技创新项目(Nos.SWH2016LHJC-07、SWH2016JCYB-01、SWH2017YQPY-03)资助.

Controlled Release of Carbon Monoxide Based on Nanomaterials and Their Biomedical Applications

  • Zhang Xiaolei ,
  • Tian Gan ,
  • Zhang Xia ,
  • Wang Qing ,
  • Gu Zhanjun
Expand
  • a College of Civil Engineering and Architecture, Shandong University of Science and Technology, Qingdao 266590;
    b CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049;
    c Institute of Pathology and Southwest Cancer Center, First Affiliated Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038

Received date: 2018-12-17

  Online published: 2019-02-14

Supported by

Project supported by the National Basic Research Programs of China (Nos. 2016YFA0201600, 2016YFA0202104), the National Natural Science Foundation of China (Nos. 51822207, 51772292, 31571015, 11621505, 11435002, 81703071) and Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2013007) and Chongqing Basic and Frontier Research Program (No. cstc2016jcyjA0279) and Military Medical Science and Technology Innovation Program of Southwest Hospital (Nos. SWH2016LHJC-07, SWH2016JCYB-01 and SWH2017YQPY-03).

摘要

一氧化碳(CO)是一种内源性气体信使分子,具有广泛而复杂的生理学功能.CO分子的生理学效应与其浓度、位置和作用时间密切相关.而现有的一氧化碳供体普遍存在着稳定性较差,剂量难以把控,缺乏靶向性以及对正常细胞和组织器官具有潜在的毒副作用等问题,限制了其进一步的应用.随着纳米科学技术的迅速发展,国内外研究者们构建出一系列能够实现可控释放CO的多功能纳米材料,并将其用于生物医学领域.结合纳米材料自身独特的性能优势,分类介绍了多种内源性/外源性刺激响应型CO控释纳米材料,并概述了可控释放CO的纳米药物在抑制炎症反应、抗菌和肿瘤治疗等生物医学领域的应用,最后对CO控释纳米材料在生物医学领域面临的挑战和发展前景进行了总结和讨论.

本文引用格式

张晓蕾 , 田甘 , 张潇 , 王清 , 谷战军 . 可控释放一氧化碳的纳米材料及其生物医学应用[J]. 化学学报, 2019 , 77(5) : 406 -417 . DOI: 10.6023/A18120504

Abstract

In recent years, the use of gas therapy has been more and more concerned by researchers in biomedical applications. Carbon monoxide (CO) is a diatomic gas messenger molecule with the function of transmitting intercellular information and regulating cellular signals. CO is found to play an extremely important physiological role in multiple systems, including cardiovascular system, nervous system, immune system, endocrine system and respiratory system, cancer therapy, coagulation and fibrinolysis system, organ transplantation and preservation, and so on. The biological functions of carbon monoxide molecule greatly depend on the its concentration, position, and duration. However, the existing carbon monoxide donors including Mn2(CO)10, Ru2Cl4(CO)6, Ru(CO)3Cl(glycinato), CORM-F, CORM-A1 have some disadvantages, such as poor stability, difficulties in dose control, lack of targeting, potential toxic and side effects on normal cells and tissues, which limited their further applications. How to control the concentration of carbon monoxide in the specific region has always been a big challenge in the field of biomedical applications. With the rapid development of nanoscience and technology, researchers have constructed a series of multifunctional carbon monoxide releasing nanomaterials, provided a new idea for CO controlled release, and applied them in the field of biomedicine. In this paper, several kinds of endogenous/exogenous stimulus-responsive CO releasing nanomaterials with the unique advantages are introduced based on the stimuli source. Then, the applications of these controlled CO releasing nanomaterials in biomedical fields, such as inhibiting inflammation, anti-bacte- rial and cancer therapy, are summarized. Finally, the challenges and prospects of CO releasing nanomaterials are discussed.

参考文献

[1] Queiroga, C. S.; Almeida, A. S.; Vieira, H. L. Biochem. Res. Int. 2012, 2012, 749845.
[2] Haldane, J. B. S. Biochem. J. 1927, 21, 1068.
[3] Turner, M.; Hamilton-Farrell, M. R.; Clark, R. J. J. Accid. Emerg. Med. 1999, 16, 92.
[4] Untereiner, A. A.; Wu, L.; Wang, R. Gasotransmitters:Physiology and Pathophysiology, Hermann, A.; Sitdikova, G. F.; Weiger, T. M., Berlin, Heidelberg, Springer, 2012, pp. 37~70.
[5] Coburn, R. F. N. Engl. J. Med. 1970, 282, 207.
[6] Douglas, C. G.; Haldane, J. S.; Haldane, J. B. J. Physiol. 1912, 44, 275.
[7] Slebos, D. J.; Ryter, S. W.; Choi, A. M. Respir. Res. 2003, 4, 7.
[8] Foresti, R.; Hammad, J.; Clark, J. E.; Johnson, T. R.; Mann, B. E.; Friebe, A.; Green, C. J.; Motterlini, R. Br. J. Pharmacol. 2004, 142, 453.
[9] Ma, X. L.; Sayed, N.; Beuve, A.; van den Akker, F. EMBO J. 2007, 26, 578.
[10] Rodriguez, A. I.; Gangopadhyay, A.; Kelley, E. E.; Pagano, P. J.; Zuckerbraun, B. S.; Bauer, P. M. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 98.
[11] Garcia-Gallego, S.; Bernardes, G. J. Angew. Chem., Int. Ed. 2014, 53, 9712.
[12] Donegan, S. E.; Naples, K. M. Cancer Pract. 2002, 10, 53.
[13] Ling, K.; Men, F.; Wang, W. C.; Zhou, Y. Q.; Zhang, H. W.; Ye, D. W. J. Med. Chem. 2018, 61, 2611.
[14] Motterlini, R.; Clark, J. E.; Foresti, R.; Sarathchandra, P.; Mann, B. E.; Green, C. J. Circ. Res. 2002, 90, E17.
[15] Zuckerbraun, B. S.; Chin, B. Y.; Bilban, M.; d'Avila, J. C.; Rao, J.; Billiar, T. R.; Otterbein, L. E. FASEB J. 2007, 21, 1099.
[16] Parr, S. R.; Wilson, M. T.; Greenwood, C. Biochem. J. 1975, 151, 51.
[17] Brunori, M.; Parr, S. R.; Greenwood, C.; Wilson, M. T. Biochem. J. 1975, 151, 185.
[18] Gorman, D.; Drewry, A.; Huang, Y. L.; Sames, C. Toxicol. 2003, 187, 25.
[19] Pitchumony, T. S.; Spingler, B.; Motterlini, R.; Alberto, R. Chimia 2008, 62, 277.
[20] Motterlini, R.; Otterbein, L. E. Nat. Rev. Drug Discovery 2010, 9, 728.
[21] Sawle, P.; Foresti, R.; Mann, B. E.; Johnson, T. R.; Green, C. J.; Motterlini, R. Br. J. Pharmacol. 2005, 145, 800.
[22] Inaba, H.; Fujita, K.; Ueno, T. Biomater. Sci. 2015, 3, 1423.
[23] Li, Y.; Shu, Y. Z.; Liang, M. W.; Xie, X. L.; Jiao, X. Y.; Wang, X.; Tang, B. Angew. Chem. Int. Ed. 2018, 57, 12415.
[24] Sanvicens, N.; Marco, M. P. Trends Biotechnol. 2008, 26, 425.
[25] Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Immunol. Lett. 2017, 190, 64.
[26] Ding, C. Z.; Li, Z. B. Mater. Sci. Eng., C 2017, 76, 1440.
[27] Wang, Z. Q.; Ciacchi, L. C.; Wei, G. Appl. Sci. 2017, 7, 1175.
[28] Gu, Z. J.; Zhu, S.; Yan, L.; Zhao, F.; Zhao, Y. L. Adv. Mater. 2018, 1800662.
[29] Kemp, J. A.; Shim, M. S.; Heo, C. Y.; Kwon, Y. J. Adv. Drug Delivery Rev. 2016, 98, 3.
[30] Blum, A. P.; Kammeyer, J. K.; Rush, A. M.; Callmann, C. E.; Hahn, M. E.; Gianneschi, N. C. J. Am. Chem. Soc. 2015, 137, 2140.
[31] Mo, R.; Gu, Z. Mater. Today 2016, 19, 274.
[32] Gulzar, A.; Gai, S. L.; Yang, P. P.; Li, C. X.; Ansari, M. B.; Lin, J. J. Mater. Chem. B 2015, 3, 8599.
[33] Swietach, P.; Vaughan-Jones, R. D.; Harris, A. L.; Hulikova, A. Phil. Trans. R. Soc. B 2014, 369, 20130099.
[34] Kato, Y.; Ozawa, S.; Miyamoto, C.; Maehata, Y.; Suzuki, A.; Maeda, T.; Baba, Y. Cancer Cell Int. 2013, 13, 89.
[35] He, Q. J. Biomater. Sci. 2017, 5, 2226.
[36] Fan, W.; Yung, B. C.; Chen, X. Angew. Chem., Int. Ed. 2018, 57, 8383.
[37] Jin, Q.; Deng, Y. Y.; Jia, F.; Tang, Z.; Ji, J. Adv. Therap. 2018, 1800084.
[38] Yin, X. F.; Liu, X. H.; Shen, L. H.; Jin, H.; Yang, P. Y. Acta Chim. Sinica 2015, 73, 337. (殷薛飞, 刘晓慧, 申华莉, 金红, 杨芃原, 化学学报, 2015, 73, 337.)
[39] Kim, C. K.; Lim, S. J. Arch. Pharm. Res. 2002, 25, 229.
[40] Li, Z. T.; Yu, G. C.; Yang, J. Org. Chem. Front. 2017, 4, 115.
[41] Zhou, L. X. Acta Chim. Sinica 2017, 75, 552. (周立祥, 化学学报, 2017, 75, 552.)
[42] Shao, W.; Liu, X.; Wang, T. T.; Hu, X. Y. Chin. J. Org. Chem. 2018, 38, 1107. (邵为, 刘昕, 王婷婷, 胡晓玉, 有机化学, 2018, 38, 1107.)
[43] Zhang, B.; Chang, B. S.; Sun, T. L. Acta Chim. Sinica 2018, 76, 35. (张蓓, 常柏松, 孙涛垒, 化学学报, 2018, 76, 35.)
[44] Li, Z. Y.; Hu, X. Y.; Jiang, J. L.; Zhang, D. M.; Xiao, S. J.; Lin, C.; Wang, L. Y. Chin. J. Org. Chem. 2018, 38, 29. (李臻益, 胡晓玉, 强琚莉, 张冬梅, 肖守军, 林晨, 王乐勇, 有机化学, 2018, 38, 29.)
[45] Motterlini, R.; Sawle, P.; Hammad, J.; Bains, S.; Alberto, R.; Foresti, R.; Green, C. J. FASEB J. 2005, 19, 284.
[46] Chang, Y. J.; Liu, X. Z.; Zhao, Q.; Yang, X. H.; Wang, K. M.; Wang, Q.; Lin, M.; Yang, M. Chin. Chem. Lett. 2015, 26, 1203.
[47] Gu, Z.; Dang, T. T.; Ma, M.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y.; Zhang, Y.; Anderson, D. G. ACS Nano 2013, 7, 6758.
[48] Nguyen, D.; Adnan, N. N.; Oliver, S.; Boyer, C. Macromol. Rapid Commun. 2016, 37, 739.
[49] Lopez-Lazaro, M. FASEB J. 2006, 20, 828.
[50] Fan, W. P.; Bu, W. B.; Shen, B.; He, Q. J.; Cui, Z. W.; Liu, Y. Y.; Zheng, X. P.; Zhao, K. L.; Shi, J. L. Adv. Mater. 2015, 27, 4155.
[51] Liu, T. P.; Wu, S. H.; Chen, Y. P.; Chou, C. M.; Chen, C. T. Nanoscale 2015, 7, 6471.
[52] Suliman, H. B.; Carraway, M. S.; Tatro, L. G.; Piantadosi, C. A. J. Cell Sci. 2007, 120, 299.
[53] Veal, E. A.; Day, A. M.; Morgan, B. A. Mol. Cell 2007, 26, 1.
[54] Tsan, M. F. Int. J. Mol. Med. 2001, 7, 13.
[55] Senturker, S.; Karahalil, B.; Inal, M.; Yilmaz, H.; Muslumanoglu, H.; Gedikoglu, G.; Dizdaroglu, M. FEBS Lett. 1997, 416, 286.
[56] Jin, Z. K.; Wen, Y. Y.; Xiong, L. W.; Yang, T.; Zhao, P. H.; Tan, L. W.; Wang, T. F.; Qian, Z. Y.; Su, B. L.; He, Q. J. Chem. Commun. 2017, 53, 5557.
[57] Jin, Z. K.; Zhao, P. H.; Zhang, J. H.; Yang, T.; Zhou, G. X.; Zhang, D. H.; Wang, T. F.; He, Q. J. Chem. Eur. J. 2018, 24, 11667.
[58] Wu, L. H.; Cai, X. J.; Zhu, H. F.; Li, J. H.; Shi, D. X.; Su, D. F.; Yue, D.; Gu, Z. W. Adv. Funct. Mater. 2018, 28, 1804324.
[59] He, Q. J.; Chen, D. Y.; Fan, M. J. J. Inorg. Mater. 2018, 33, 811. (何前军, 陈丹阳, 范明俭, 无机材料学报, 2018, 33, 811.)
[60] Gonzales, M. A.; Han, H.; Moyes, A.; Radinos, A.; Hobbs, A. J.; Coombs, N.; Oliver, S. R. J.; Mascharak, P. K. J. Mater. Chem. B 2014, 2, 2107.
[61] Govender, P.; Pai, S.; Schatzschneider, U.; Smith, G. S. Inorg. Chem. 2013, 52, 5470.
[62] Bohlender, C.; Glaser, S.; Klein, M.; Weisser, J.; Thein, S.; Neugebauer, U.; Popp, J.; Wyrwa, R.; Schiller, A. J. Mater. Chem. B 2014, 2, 1454.
[63] Bruckmann, N. E.; Wahl, M.; Reiss, G. J.; Kohns, M.; Watjen, W.; Kunz, P. C. Eur. J. Inorg. Chem. 2011, 2011, 4571.
[64] Popova, M.; Soboleva, T.; Ayad, S.; Benninghoff, A. D.; Berreau, L. M. J. Am. Chem. Soc. 2018, 140, 9721.
[65] Fujita, K.; Tanaka, Y.; Abe, S.; Ueno, T. Angew. Chem., Int. Ed. 2016, 55, 1056.
[66] Dordelmann, G.; Meinhardt, T.; Sowik, T.; Krueger, A.; Schatzschneider, U. Chem. Commun. 2012, 48, 11528.
[67] Carmona, F. J.; Jimenez-Amezcua, I.; Rojas, S.; Romao, C. C.; Navarro, J. A. R.; Maldonado, C. R.; Barea, E. Inorg. Chem. 2017, 56, 10474.
[68] Chakraborty, I.; Carrington, S. J.; Hauser, J.; Oliver, S. R. J.; Mascharak, P. K. Chem. Mater. 2015, 27, 8387.
[69] Zhang, X. D.; Tian, H.; He, J. H.; Cao, Y. Acta Chim. Sinica 2013, 71, 433. (张晓丹, 田华, 贺军辉, 曹阳, 化学学报, 2013, 71, 433.)
[70] Diring, S.; Carne-Sanchez, A.; Zhang, J.; Ikemura, S.; Kim, C.; Inaba, H.; Kitagawa, S.; Furukawa, S. Chem. Sci. 2017, 8, 2381.
[71] Pierri, A. E.; Huang, P. J.; Garcia, J. V.; Stanfill, J. G.; Chui, M.; Wu, G.; Zheng, N.; Ford, P. C. Chem. Commun. 2015, 51, 2072.
[72] Askes, S. H. C.; Reddy, G. U.; Wyrwa, R.; Bonnet, S.; Schiller, A. J. Am. Chem. Soc. 2017, 139, 15292.
[73] He, Q. J.; Kiesewetter, D. O.; Qu, Y.; Fu, X.; Fan, J.; Huang, P.; Liu, Y. J.; Zhu, G. Z.; Liu, Y.; Qian, Z. Y.; Chen, X. Y. Adv. Mater. 2015, 27, 6741.
[74] Tan, M. J.; Pan, H. C.; Tan, H. R.; Chai, J. W.; Lim, Q. F.; Wong, T. I.; Zhou, X.; Hong, Z. Y.; Liao, L. D.; Kong, K. V. Adv. Healthcare Mater. 2018, 7, 1870022.
[75] Wei, Z. J.; Liu, G. X.; Dong, X. T.; Wang, J. X.; Yu, W. S. Acta Chim. Sinica 2014, 72, 257. (魏忠杰, 刘桂霞, 董相廷, 王进贤, 于文生, 化学学报, 2014, 72, 257.)
[76] Zhang, X.; Guo, Z.; Liu, J.; Tian, G.; Chen, K.; Yu, S. C.; Gu, Z. J. Sci. Bull. 2017, 62, 985.
[77] Chen, H. B.; Gu, Z. J.; An, H. W.; Chen, C. Y.; Chen, J.; Cui, R.; Chen, S. Q.; Chen, W. H.; Chen, X. S.; Chen, X. Y.; Chen, Z.; Ding, B. Q.; Dong, Q.; Fan, Q.; Fu, T.; Hou, D. Y.; Jiang, Q.; Ke, H. T.; Jiang, X. Q.; Liu, G.; Li, S. P.; Li, T. Y.; Liu, Z.; Nie, G. J.; Ovais, M.; Pang, D. W.; Qiu, N. S.; Shen, Y. Q.; Tian, H. Y.; Wang, C.; Wang, H.; Wang, Z. Q.; Xu, H. P.; Xu, J. F.; Yang, X. L.; Zhu, S.; Zheng, X. C.; Zhang, X. Z.; Zhao, Y. B.; Tan, W. H.; Zhang, X.; Zhao, Y. L. Sci. China Chem. 2018, 61, 1503.
[78] Lin, X. Y.; Wang, J. Acta Chim. Sinica 2017, 75, 979(in Chinese). (林潇羽, 王璟, 化学学报, 2017, 75, 979.)
[79] Li, W. P.; Su, C. H.; Tsao, L. C.; Chang, C. T.; Hsu, Y. P.; Yeh, C. S. ACS Nano 2016, 10, 11027.
[80] Cole, A. J.; Yang, V. C.; David, A. E. Trends Biotechnol. 2011, 29, 323.
[81] Williams, P. S.; Carpino, F.; Zborowski, M. Mol. Pharmaceutics 2009, 6, 1290.
[82] Pankhurst, Q. A.; Connolly, J.; Jones, S. K.; Dobson, J. J. Phys. D: Appl. Phys. 2003, 36, R167.
[83] Kunz, P. C.; Meyer, H.; Barthel, J.; Sollazzo, S.; Schmidt, A. M.; Janiak, C. Chem. Commun. 2013, 49, 4896.
[84] Meyer, H.; Winkler, F.; Kunz, P.; Schmidt, A. M.; Hamacher, A.; Kassack, M. U.; Janiak, C. Inorg. Chem. 2015, 54, 11236.
[85] Stone, J. R.; Marletta, M. A. Biochemistry 1994, 33, 5636.
[86] Botros, F. T.; Navar, L. G. Am. J. Physiol. Heart Circ. Physiol. 2006, 291, H2772.
[87] Ramos, K. S.; Lin, H.; McGrath, J. J. Biochem. Pharmacol. 1989, 38, 1368.
[88] Li, A. L.; Xi, Q.; Umstot, E. S.; Bellner, L.; Schwartzman, M. L.; Jaggar, J. H.; Leffler, C. W. Circ. Res. 2008, 102, 234.
[89] Song, Y. C.; Liu, J. X.; Zhang, Y. Y.; Shi, W.; Ma, H. M. Acta Chim. Sinica 2013, 71, 1607. (宋延超, 刘俊秀, 张阳阳, 史文, 马会民, 化学学报, 2013, 71, 1607.)
[90] Otterbein, L. E.; Bach, F. H.; Alam, J.; Soares, M.; Lu, H. T.; Wysk, M.; Davis, R. J.; Flavell, R. A.; Choi, A. M. Nat. Med. 2000, 6, 422.
[91] Lee, T. S.; Tsai, H. L.; Chau, L. Y. J. Biol. Chem. 2003, 278, 19325.
[92] Nguyen, D.; Nguyen, T. K.; Rice, S. A.; Boyer, C. Biomacromolecules 2015, 16, 2776.
[93] Motterlini, R.; Mann, B. E.; Foresti, R. Expert Opin. Investig. Drugs 2005, 14, 1305.
[94] Mann, B. E. Medicinal Organometallic Chemistry. Topics in Organometallic Chemistry, Eds.:Jaouen, G.; Metzler-Nolte, N., Berlin, Heidelberg, Springer, 2010, Vol. 32, p. 247.
[95] Ferrandiz, M. L.; Maicas, N.; Garcia-Arnandis, I.; Terencio, M. C.; Motterlini, R.; Devesa, I.; Joosten, L. A.; van den Berg, W. B.; Alcaraz, M. J. Ann. Rheum. Dis. 2008, 67, 1211.
[96] Bathoorn, E.; Slebos, D. J.; Postma, D. S.; Koeter, G. H.; van Oosterhout, A. J.; van der Toorn, M.; Boezen, H. M.; Kerstjens, H. A. Eur. Respir. J. 2007, 30, 1131.
[97] Nowick, J. S.; Chung, D. M.; Maitra, K.; Maitra, S.; Stigers, K. D.; Sun, Y. J. Am. Chem. Soc. 2000, 122, 7654.
[98] Morse, D.; Pischke, S. E.; Zhou, Z.; Davis, R. J.; Flavell, R. A.; Loop, T.; Otterbein, S. L.; Otterbein, L. E.; Choi, A. M. J. Biol. Chem. 2003, 278, 36993.
[99] Otterbein, L. E.; Choi, A. M. Am. J. Physiol. Lung Cell Mol. Physiol. 2000, 279, L1029.
[100] Pae, H. O.; Oh, G. S.; Choi, B. M.; Chae, S. C.; Kim, Y. M.; Chung, K. R.; Chung, H. T. J. Immunol. 2004, 172, 4744.
[101] Song, R. P.; Zhou, Z. H.; Kim, P. K.; Shapiro, R. A.; Liu, F.; Ferran, C.; Choi, A. M.; Otterbein, L. E. J. Biol. Chem. 2004, 279, 44327.
[102] Bani-Hani, M. G.; Greenstein, D.; Mann, B. E.; Green, C. J.; Motterlini, R. J. Pharmacol. Exp. Ther. 2006, 318, 1315.
[103] Bani-Hani, K. E.; Bani-Hani, B. K. World J. Gastroenterol. 2006, 12, 1521.
[104] Guillen, M. I.; Megias, J.; Clerigues, V.; Gomar, F.; Alcaraz, M. J. Rheumatol. 2008, 47, 1323.
[105] Hasegawa, U.; van der Vlies, A. J.; Simeoni, E.; Wandrey, C.; Hubbell, J. A. J. Am. Chem. Soc. 2010, 132, 18273.
[106] Van der Vlies, A. J.; Inubushi, R.; Uyama, H.; Hasegawa, U. Bioconjug. Chem. 2016, 27, 1500.
[107] Qureshi, O. S.; Zeb, A.; Akram, M.; Kim, M. S.; Kang, J. H.; Kim, H. S.; Majid, A.; Han, I.; Chang, S. Y.; Bae, O. N.; Kim, J. K. Eur. J. Pharm. Biopharm. 2016, 108, 187.
[108] Fujita, K.; Tanaka, Y.; Sho, T.; Ozeki, S.; Abe, S.; Hikage, T.; Kuchimaru, T.; Kizaka-Kondoh, S.; Ueno, T. J. Am. Chem. Soc. 2014, 136, 16902.
[109] Fujita, K.; Tanaka, Y.; Abe, F.; Ueno, T. Angew. Chem., Int. Ed. 2016, 55, 1056.
[110] Nobre, L. S.; Seixas, J. D.; Romao, C. C.; Saraiva, L. M. Antimicrob. Agents Chemother. 2007, 51, 4303.
[111] Lu, Y.; Slomberg, D. L.; Schoenfisch, M. H. Biomaterials 2014, 35, 1716.
[112] Lu, Y.; Slomberg, D. L.; Shah, A.; Schoenfisch, M. H. Biomacromolecules 2013, 14, 3589.
[113] Murray, T. S.; Okegbe, C.; Gao, Y.; Kazmierczak, B. I.; Motterlini, R.; Dietrich, L. E.; Bruscia, E. M. PLoS One 2012, 7, e35499.
[114] Nobre, L. S.; Al-Shahrour, F.; Dopazo, J.; Saraiva, L. M. Microbiology 2009, 155, 813.
[115] Desmard, M.; Davidge, K. S.; Bouvet, O.; Morin, D.; Roux, D.; Foresti, R.; Ricard, J. D.; Denamur, E.; Poole, R. K.; Montravers, P.; Motterlini, R.; Boczkowski, J. FASEB J. 2009, 23, 1023.
[116] Loboda, A.; Jazwa, A.; Wegiel, B.; Jozkowicz, A.; Dulak, J. Cell Mol. Biol. (Noisy-le-grand) 2005, 51, 347.
[117] Chung, S. W.; Liu, X. L.; Macias, A. A.; Baron, R. M.; Perrella, M. A. J. Clin. Invest. 2008, 118, 239.
[118] Bang, C. S.; Kruse, R.; Johansson, K.; Persson, K. BMC Microbiology 2016, 16, 64.
[119] Flanagan, L.; Steen, R. R.; Saxby, K.; Klatter, M.; Aucott, B. J.; Winstanley, C.; Fairlamb, I. J. S.; Lynam, J. M.; Parkin, A.; Friman, V.-P. Front. Microbiol. 2018, 9, 195.
[120] Wilson, J. L.; Jesse, H. E.; Poole, R. K.; Davidge, K. S. Curr. Pharm. Biotechnol. 2012, 13, 760.
[121] Li, B.; Zhang, X. Y.; Yang, J. Z.; Zhang, Y. J.; Li, W. X.; Fan, C. H.; Huang, Q. Int. J. Nanomed. 2014, 9, 4697.
[122] Folkman, J. N. Engl. J. Med. 1971, 285, 1182.
[123] Calderon-Montano, J. M.; Burgos-Moron, E.; Orta, M. L.; Mateos, S.; Lopez-Lazaro, M. Planta Med. 2013, 79, 1017.
[124] Pompella, A.; Visvikis, A.; Paolicchi, A.; De Tata, V.; Casini, A. F. Biochem. Pharmacol. 2003, 66, 1499.
[125] Wu, X. Y.; Zhang, L.; Lü, D.; Liu, Y. H.; Chen, Y. N.; Su, W. J.; Luo, N.; Xiang, R. Acta Chim. Sinica 2013, 71, 299. (吴星怡, 张磊, 吕丹, 刘艳华, 陈亚南, 苏位君, 罗娜, 向荣, 化学学报, 2013, 71, 299.)
[126] Matsumura, Y.; Maeda, H. Cancer Res. 1986, 46, 6387.
[127] Zheng, D. W.; Li, B.; Li, C. X.; Xu, L.; Fan, J. X.; Lei, Q.; Zhang, X. Z. Adv. Mater. 2017, 29, 1703822.

文章导航

/