研究评论

聚芴类共轭聚合物(PFs)从溶液到薄膜凝聚态演变过程中的定量构效关系

  • 张昊 ,
  • 黄龙 ,
  • 李涛 ,
  • 刘宾 ,
  • 白泽明 ,
  • 李小娜 ,
  • 陆丹
展开
  • 吉林大学化学学院 超分子结构与材料国家重点实验室 长春 130012
张昊,吉林大学化学学院在读博士生.2012年、2016年、2018年于吉林大学化学学院就读学士、硕士及博士,师从陆丹教授.研究方向为共轭高分子溶液行为及凝聚态结构;陆丹,理学博士,教授,博士生导师.1993年考入中国科学院长春应用化学研究所,高分子化学与物理国家重点实验室攻读硕士学位后直博,师从于冯之榴、李滨耀研究员,1998年获得博士学位.1998~2001年,在吉林大学超分子结构与材料国家重点实验室,师从于沈家骢院士做博士后研究工作,后留校任教.研究兴趣主要包括:共轭聚合物链构象变化对载流子迁移特性影响的研究;外电场对共轭高分子有序结构的调控及载流子迁移特性的影响;共轭高分子PFO链构象及其凝聚态结构的标度律研究.

收稿日期: 2018-12-25

  网络出版日期: 2019-03-18

基金资助

项目受国家自然科学基金(Nos.21174049,91333103,21574053)资助.

Quantitative Structure-property Relationship of Polyfluorene Conjugated Polymers Condensed State from Solution to Film

  • Zhang Hao ,
  • Huang Long ,
  • Li Tao ,
  • Liu Bin ,
  • Bai Zeming ,
  • Li Xiaona ,
  • Lu Dan
Expand
  • State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012

Received date: 2018-12-25

  Online published: 2019-03-18

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21174049, 91333103, 21574053).

摘要

聚芴(polyfluorenes,PFs)是一类具有高荧光效率和良好热稳定性的经典蓝光共轭聚合物.本研究组近年来集中于聚芴类共轭聚合物溶液中单链构象-聚集态结构-薄膜凝聚态结构-器件性能间的定量构效关系研究,利用静/动联用激光光散射等表征手段,结合标度率研究方法,对PFs成膜前体溶液复杂的单链和聚集的形态结构进行了系统的研究.结合光谱与电镜等方法,揭示出PFs在溶液中孤立单链、凝聚态结构、β构象及其过渡态结构形成的动力学过程、机理及规律,构建出成膜前体溶液单链构象-薄膜中链构象-器件性能之间的定量构效关系.旨在从高分子本征性质入手,提高其光电效率.本研究不仅对聚芴类高分子,而且对整个共轭聚合物类材料的设计与加工都将具有重要的指导意义.

本文引用格式

张昊 , 黄龙 , 李涛 , 刘宾 , 白泽明 , 李小娜 , 陆丹 . 聚芴类共轭聚合物(PFs)从溶液到薄膜凝聚态演变过程中的定量构效关系[J]. 化学学报, 2019 , 77(5) : 397 -405 . DOI: 10.6023/A19010039

Abstract

Polyfluorenes are not only a class of classical blue conjugated polymers with high fluorescence efficiency and good thermal stability, but also a hairy-rod polymer model due to their rigid main chain and flexible side chain. Therefore, PFs have received attention and related reports are continuing. Most of the research on PFs has focused on the synthesis of new functional materials and the improvement of device structure to improve their photoelectric properties. However, the research on single chain conformation, chain aggregation structure, film condensed structure and photovoltaic devices performance in the process of precursor solution to film are rarely reported. In recent years, our research group focused on the quantitative structure-property relationship of polyfluorene conjugated polymers condensed state from solution to film. The complex single chain and aggregate shape characteristics of PFs precursor solutions were studied by static/dynamic laser scattering and other methods. Combining spectroscopy, electron microscopy and other methods, the kinetic evolution of PFs in isolated single chain, aggregation condensed-structures, transition state and the mechanism and regularity of β-conformation are revealed. Quantitative structure-property relationship of single-chain conformation of precursor solution, aggregate structure of thin film and optoelectronic device performance is established. The aim is to improve the photoelectric efficiency of the polymer from the intrinsic properties. The research will have important guiding significance not only for polyfluorene-based polymers but also for the design and processing of the entire conjugated polymer materials.

参考文献

[1] Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Brédas, J. L.; Lögdlund, M.; Salaneck, W. R. Nature 1999, 397, 121.
[2] Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Chem. Rev. 2009, 109(11), 5868.
[3] McGehee, M. D.; Heeger, A. J. Adv. Mater. 2000, 12(22), 1655.
[4] Jia, T.; Zheng, N.-N.; Cai, W.-Q.; Ying, L.; Huang, F. Acta Chim. Sinica 2017, 75(8), 808(in Chinese). (贾涛, 郑楠楠, 蔡万清, 应磊, 黄飞, 化学学报, 2017, 75(8), 808.)
[5] Liu, Y.; Yuan, J.; Zou, Y.-P.; Li, Y.-F. Acta Chim. Sinica 2017, 75(3), 257(in Chinese). (刘晔, 袁俊, 邹应萍, 李永舫, 化学学报, 2017, 75(3), 257.)
[6] Liang, L.; Liu, L.-N.; Chen, X.-Q.; Xiang, X.; Lin, Q.; Lu, Z.-Q.; Li, J.-J.; Li, W.-S. Chin. J. Org. Chem. 2019, 39(1), 157(in Chinese). (梁龙, 刘丽娜, 陈学强, 项宣, 凌君, 鲁郑全, 李靖靖, 李维实, 有机化学, 2019, 39(1), 157.)
[7] Xie, L.-H.; Yang, S.-H.; Lin, J.-Y.; Yi, M.-D.; Huang, W. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 2000.
[8] Dudek, S. P.; Pouderoijen, M.; Abbel, R.; Schenning, A. P. H. J.; Meijer, E. W. J. Am. Chem. Soc. 2005, 127(33), 11763.
[9] Pei, J.; Liu, X.-L.; Chen, Z.-K.; Zhang, X.-H.; Lai, Y.-H.; Huang, W. Macromolecules 2003, 36(2), 323.
[10] Smela, E.; Jager, E. W. H.; Inganas, O.; Smela, E.; Inganäs, O. Science 2000, 290, 1540.
[11] Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Science 2007, 317, 222.
[12] Cui, H.-N.; Qiu, F.; Peng, J. Acta Chim. Sinica 2018, 76(9), 691(in Chinese). (崔惠娜, 邱枫, 彭娟, 化学学报, 2018, 76(9), 691.)
[13] Lin, D.-Y.; Song, S.-C.; Chen, Z.-Y.; Guo, P.-R.; Chen, J.-H.; Shi, H.-H.; Mai, Y.-L.; Song, H.-C. Chin. J. Org. Chem. 2018, 38(1), 103(in Chinese). (林丹燕, 宋森川, 陈智勇, 郭鹏然, 陈江韩, 史华红, 麦裕良, 宋化灿, 有机化学, 2018, 38(1), 103.)
[14] Pan, B.; Zhu, Y.-Z.; Qiu, C.-J.; Wang, B.; Zheng, J.-Y. Acta Chim. Sinica 2018, 76(3), 215(in Chinese). (潘彬, 朱义州, 邱昌娟, 王冰, 郑健禺, 化学学报, 2018, 76(3), 215.)
[15] Cui, J.-J. Chin. J. Org. Chem. 2018, 38(11), 2888(in Chinese). (崔晶晶, 有机化学, 2018, 38(11), 2888.)
[16] Zheng, Y. Q.; Yao, Z. F.; Lei, T.; Dou, J. H.; Yang, C. Y.; Zou, L.; Meng, X.; Ma, W.; Wang, J. Y.; Pei, J. Adv. Mater. 2017, 29(42), 1701072.
[17] Samuelsen, E. J.; Breiby, D. W.; Konovalov, O.; Struth, B.; Smilgies, D. Synth. Met. 2001, 123, 165.
[18] Neher, D. Macromol. Rapid Comm. 2001, 22, 1365.
[19] Scherf, U.; List, E. J. W. Adv. Mater.2002, 14(7), 477.
[20] Marsitzky, D.; Murray, J.; Scott, J. C.; Carter, K. R. Chem. Mater. 2001, 13(11), 4285.
[21] Klärner, G.; Lee, J. I.; Davey, M. H.; Miller, R. D. Adv. Mater. 1999, 11(2), 115.
[22] Zeng, G.; Yu, W. L.; Chua, S. J.; Huang, W. Macromolecules 2002, 35(18), 6907.
[23] Hayer, A.; Khan, A. L. T.; Friend, R. H.; Köhler, A. Phys. Rev. B-Condens. Matter Mater. Phys. 2005, 71(24), 241302.
[24] Ballauff, M. Macromolecules 1986, 19(5), 1366.
[25] Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Acta Polym. 1998, 49, 439.
[26] Knaapila, M.; Almásy, L.; Garamus, V. M.; Ramos, M. L.; Justino, L. L. G.; Galbrecht, F.; Preis, E.; Scherf, U.; Burrows, H. D.; Monkman, A. P. Polymer 2008, 49(8), 2033.
[27] Lu, H. H.; Liu, C. Y.; Chang, C. H.; Chen, S. A. Adv. Mater. 2007, 19(18), 2574.
[28] Peet, J.; Brocker, E.; Xu, Y.; Bazan, G. C. Adv. Mater. 2008, 20(10), 1882.
[29] Huang, L.; Huang, X.; Sun, G.; Gu, C.; Lu, D.; Ma, Y. J. Phys. Chem. C 2012, 116(14), 7993.
[30] Hirata, S.; Lee, T. J.; Head-Gordon, M. J. Chem. Phys. 1999, 111(19), 8904.
[31] Li, T.; Huang, L.; Bai, Z.; Li, X.; Liu, B.; Lu, D. Polymer 2016, 88, 71.
[32] Huang, L.; Li, T.; Liu, B.; Zhang, L.; Bai, Z.; Li, X.; Huang, X.; Lu, D. Soft Matter 2015, 11(13), 2627.
[33] Dai, S.; Tam, K. C.; Jenkins, R. D. Macromolecules 2000, 33(2), 404.
[34] Niu, A.; Liaw, D. J.; Sang, H. C.; Wu, C. Macromolecules 2000, 33(9), 3492.
[35] Raspaud, E.; Lairez, D.; Adam, M.; Carton, J. P. Macromolecules 1994, 27(11), 2956.
[36] Zhang, G.; Niu, A.; Peng, S.; Jiang, M.; Tu, Y.; Li, M.; Wu, C. Acc. Chem. Res. 2001, 34(3), 249.
[37] Huang, Z.; Huang, Y.; Li, X.; Zhang, L. Carbohydr. Polym. 2009, 78(3), 596.
[38] Li, T.; Liu, B.; Zhang, H.; Ren, J.; Bai, Z.; Li, X.; Ma, T.; Lu, D. Polymer 2016, 103, 299.
[39] Li, N.; Li, Y.; Wang, X. Macromolecules 2011, 44(21), 8598.
[40] Li, T.; Lu, D. Acta Chim. Sinica 2016, 74, 649(in Chinese). (李涛, 陆丹, 化学学报, 2016, 74, 649.)
[41] Li, X.; Bai, Z.; Liu, B.; Li, T.; Lu, D. J. Phys. Chem. C 2017, 121, 14443.
[42] Liu, B.; Li, T.; Zhang, H.; Ma, T.; Ren, J.; Liu, B.; Liu, B.; Lin, J.; Yu, M.; Xie, L.; Lu, D. J. Phys. Chem. C 2018, 122(26), 14814.
[43] Bai, Z.; Liu, Y.; Li, T.; Li, X.; Liu, B.; Liu, B.; Lu, D. J. Phys. Chem. C 2016, 120(49), 27820.

文章导航

/