含氟共轭微孔聚合物的制备及其吸附应用研究
收稿日期: 2019-02-22
网络出版日期: 2019-04-17
基金资助
项目受国家自然科学基金(Nos.21574087,21404074)和高分子材料工程国家重点实验室自主课题(Sklpme2018-2-05)资助.
Preparation and Adsorption Application Study of Fluorine-containing Conjugated Microporous Polymers
Received date: 2019-02-22
Online published: 2019-04-17
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 21574087, 21404074) and the State Key Laboratory of Polymer Materials Engi-neering (No. Sklpme2018-2-05).
共轭微孔聚合物由于其高的比表面积、优良的物理化学稳定性、多样的合成方法以及沿分子骨架延伸的共轭结构等特点,近几年得到广泛关注和快速发展.本工作以1,3,5-三氟-2,4,6-三碘苯作为含氟单体与1,3,5-三乙炔基苯通过Sonogashira偶联反应聚合得到含氟共轭微孔聚合物F-CMP.通过把氟原子引入到共轭微孔聚合物骨架中,F-CMP显示出良好的疏水性能,与水的接触角达到145°.得益于良好的疏水性能和适宜的孔隙结构,相比于骨架结构相似的不含氟共轭微孔聚合物(H-CMP),F-CMP对油和有机溶剂的吸附量得到大幅提高,且显示出高的吸附速率和良好的吸附循环性.
岳勇 , 钱祉祺 , 孔凡安 , 肖琴 , 任世杰 . 含氟共轭微孔聚合物的制备及其吸附应用研究[J]. 化学学报, 2019 , 77(6) : 500 -505 . DOI: 10.6023/A19020066
Water pollution arising from ever-growing domestic sewage and industrial organic pollutants has caused severe environmental and ecological problems in many parts of the world. It is urgent to seek appropriate ways to resolve oily wastewater and organic solvent pollution. Currently, physical adsorption is considered to be one of the most important methods to eliminate the oil contaminations in water thanks to its high efficiency and low cost. However, traditional adsorbent materials, such as activated carbon, zeolite and natural fibers, often suffer from low adsorption capacities, poor adsorption selectivity and recyclability. Thus, it is still of great importance to develop new absorbent materials for the separation and removal of oils or organic pollutants from water to address environmental issues. Conjugated microporous polymers (CMPs) are a class of organic porous polymers that have attracted extensive attention thanks to their large specific surface area, good physicochemical stability and unique extended π-conjugation along the polymer skeleton. Here we report a fluorine-containing conjugated microporous polymer (F-CMP), which was synthesized via Sonogashira cross-coupling reaction from 1,3,5-trifluoro-2,4,6-triiodobenzene and 1,3,5-triethynylbenzene. As a comparison, fluorine-free conjugated microporous polymer (H-CMP) was synthesized in the same condition from 1,3,5-tribromobenzene and 1,3,5-triethynybenzene. By introducing fluorine atom into the conjugated microporous skeleton, the contact angle of F-CMP with water reaches 145°, exhibiting excellent hydrophobicity. Nitrogen adsorption/desorption isotherms of the F-CMP show a high specific surface area of 638 m2·g-1, and the pore size distribution analysis shows the existence of both micropores and macropores. It can be obtained by adsorption experiments of oil and organic solvents that the adsorption capability of F-CMP increases significantly compared with its fluorine-free counterpart with similar structural skeleton. Due to high hydrophobicity and porous properties, F-CMP shows excellent adsorption properties towards to the removal of organic solvents and oils. The adsorption capability of F-CMP towards pump oil and chloroform can reach 40 g/g and 43 g/g, respectively. Meanwhile, F-CMP shows rapid adsorption rate and excellent adsorption recyclability. Thus, F-CMP displays promising application prospects in the field of organic pollutant adsorption and environmental remediation.
[1] Shannon, M. A.; Bohn, P. W.; Elimelech, M.; Georgiadis, J. G.; Marinas, B. J.; Mayes, A. M. Nature 2008, 452, 301.
[2] Doshi, B.; Sillanpaa, M.; Kalliola, S. Water Res. 2018, 135, 262.
[3] Gupta, S.; Tai, N. H. J. Mater. Chem. A 2016, 4, 1550.
[4] Lei, E.; Li, W.; Ma, C.; Liu, S. Mater. Chem. Phys. 2018, 214, 291.
[5] Mohan, D.; Singh, K. P.; Singh, V. K. J. Hazard Mater. 2008, 152, 1045.
[6] Sakthivel, T.; Reid, D. L.; Goldstein, I.; Hench, L.; Seal, S. Environ. Sci. Technol. 2013, 47, 5843.
[7] Likon, M.; Remskar, M.; Ducman, V.; Svegl, F. J. Environ. Manage. 2013, 114, 158.
[8] Zhang, T.; Kong, L.; Dai, Y.; Yue, X.; Rong, J.; Qiu, F.; Pan, J. Chem. Eng. J. 2017, 309, 7.
[9] Chin, S. F.; Binti, R. A. N.; Pang, S. C. Mater. Lett. 2014, 115, 241.
[10] Ong, C. C.; Sundera, M. S.; Mohamed, N. M.; Perumal, V.; Mohamed, S. M. S. ACS Omega. 2018, 3, 15907.
[11] Ji, C.; Zhang, K.; Li, L.; Chen, X.; Hu, J.; Yan, D.; Xiao, G.; He, X. J. Mater. Chem. A 2017, 5, 11263.
[12] Peng, D.; Jiang, W.; Li, F. F.; Zhang, L.; Liang, R. P.; Qiu, J. D. ACS Sustainable Chem. Eng. 2018, 6, 11685.
[13] Dawson, R.; Laybourn, A.; Clowes, R.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Macromolecules 2009, 42, 8809.
[14] Dawson, R.; Cooper, A. I.; Adams, D. J. Prog. Polym. Sci. 2012, 37, 530.
[15] Yan, T. T.; Xing, G. L.; Ben, T. Acta Chim. Sinica 2018, 76, 366. (闫婷婷, 邢国龙, 贲腾, 化学学报, 2018, 76, 366.)
[16] Pang, C.; Luo, S. H.; Hao, Z. F.; Gao, J.; Huang, Z. H.; Yu, J. H.; Yu, S. M.; Wang, Z. Y. Chin. J. Org. Chem. 2018, 38, 2606. (庞楚明, 罗时荷, 郝志峰, 高健, 黄召昊, 余家海, 余思敏, 汪朝阳, 有机化学, 2018, 38, 2606.)
[17] Yu, S.; Xu, Y. J.; Jiang, J. X.; Ren, S. J. Acta Chim. Sinica 2015, 73, 629. (于森, 徐雍捷, 蒋加兴, 任世杰, 化学学报, 2015, 73, 629.)
[18] Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Chem. Soc. Rev. 2013, 42, 8012.
[19] Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Angew. Chem. Int. Ed. 2007, 46, 8574.
[20] Chen, Q.; Liu, D. P.; Luo, M.; Feng, L. J.; Zhao, Y. C.; Han, B. H. Small 2014, 10, 308.
[21] Wang, X.; Chen, B.; Dong, W.; Zhang, X.; Li, Z.; Xiang, Y.; Chen, H. Macromol. Rapid Commun. 2018, e1800494.
[22] Kong, S. N.; Malik, A. U.; Qian, X. F.; Shu, M. H.; Xiao, W. D. Chin. J. Org. Chem. 2018, 38, 656. (孔胜男, Abaid Ullah Malik, 钱雪峰, 舒谋海, 肖文德, 有机化学, 2018, 38, 656.)
[23] Kong, S. N.; Qian, X. F.; Shu, M. H.; Xiao, W. D. Chin. J. Org. Chem. 2018, 38, 2754. (孔胜男, 钱雪峰, 舒谋海, 肖文德, 有机化学, 2018, 38, 2754.)
[24] Xu, Y. J.; Wu, S. P.; Ren, S. J.; Ji, J.; Yue, Y.; Shen, J. J. RSC Adv. 2017, 7, 32496.
[25] He, Q.; Zhang, C.; Li, X.; Wang, X.; Mu, P.; Jiang, J. X. Acta Chim. Sinica 2018, 76, 202. (贺倩, 张崇, 李晓, 王雪, 牟攀, 蒋加兴, 化学学报, 2018, 76, 202.)
[26] Liao, Y.; Cheng, Z.; Zuo, W.; Thomas, A.; Faul, C. F. J. ACS Appl. Mater. Interfaces 2017, 9, 38390.
[27] Bildirir, H.; Osken, I.; Ozturk, T.; Thomas, A. Chemistry 2015, 21, 9306.
[28] Qiu, F.; Zhao, W.; Han, S.; Zhuang, X.; Lin, H.; Zhang, F. Polymers 2016, 8, 191.
[29] Yang, R. X.; Wang, T. T.; Deng, W. Q. Sci. Rep. 2015, 5, 10155.
[30] Lee, J. S. M.; Wu, T. H.; Alston, B. M.; Briggs, M. E.; Hasell, T.; Hu, C. C.; Cooper, A. I. J. Mater. Chem. A 2016, 4, 7665.
[31] Qin, L.; Xu, G. j.; Yao, C.; Xu, Y. Polym. Chem. 2016, 7, 4599.
[32] Cha, M. C.; Lim, Y.; Choi, T. J.; Chang, J. Y. Macromol. Chem. Phys. 2017, 218, 1700219.
[33] Shen, X.; He, J.; Wang, K.; Li, X.; Wang, X.; Yang, Z.; Wang, N.; Zhang, Y.; Huang, C. ChemSusChem 2019, 12, 1342.
[34] Zhao, X.; Wu, M.; Liu, Y.; Cao, S. Org. Lett. 2018, 20, 5564.
[35] Ju, Z.; Zhang, S.; Xing, Z.; Zhuang, Q.; Qiang, Y.; Qian, Y. ACS Appl. Mater. Interfaces 2016, 8, 20682.
[36] Wang, X.; Mu, P.; Zhang, C.; Chen, Y.; Zeng, J.; Wang, F.; Jiang, J. X. ACS Appl. Mater. Interfaces 2017, 9, 20779.
[37] Xu, L.; Xiao, G.; Chen, C.; Li, R.; Mai, Y.; Sun, G.; Yan, D. J. Mater. Chem. A 2015, 3, 7498.
[38] Wenk, H. H.; Sander, W. Eur. J. Org. Chem. 2002, 3927.
/
〈 |
|
〉 |