研究论文

溶剂热法制备纳米氧化镍及其表征

  • 陈甜 ,
  • 杨英 ,
  • 赵婉玉 ,
  • 潘德群 ,
  • 朱从潭 ,
  • 林飞宇 ,
  • 郭学益
展开
  • 中南大学 冶金与环境学院 长沙 410083

收稿日期: 2019-01-19

  网络出版日期: 2019-04-22

基金资助

项目受国家自然科学基金(61774169)、留学回国基金、湖南省自然科学基金(2016JJ3140)和中南大学本科生创新项目(ZY20180866,202321009)资助.

Solvothermal Preparation and Characterization of Nano-nickel Oxide

  • Chen Tian ,
  • Yang Ying ,
  • Zhao Wanyu ,
  • Pan Dequn ,
  • Zhu Congtan ,
  • Lin Feiyu ,
  • Guo Xueyi
Expand
  • Central South University, School of Metallurgy and Environment, Changsha 410083

Received date: 2019-01-19

  Online published: 2019-04-22

Supported by

Project supported by the National Natural Science Foundation of China (No. 61774169), Scientific Research Foundation for the Returned overseas Chinese Scholar, Natural Science Foundation of Hunan Province (2016JJ3140) and Undergraduate student of Central South University (ZY20180866,202321009).

摘要

以乙酰丙酮镍、油酸、油胺为原料,十八烯为溶剂,聚乙烯吡咯烷酮为表面活性剂,采用溶剂热法,在不同反应条件制备了纳米级氧化镍材料.通过X射线衍射(X-ray diffraction,XRD)、透射电子显微镜(Transmission electron microscope,TEM)、紫外-可见光吸收光谱(Ultraviolet-visible spectroscopy,UV-Vis)光谱分析以及塔菲尔(Tafel)测试考察了反应物比例、保温时间、表面活性剂(PVP)、油胺的量对产物微结构、粒径、形貌、光学以及电化学活性性能的影响.实验结果表明:在反应物n[Ni(acac)2]∶n(OA)=1∶2、添加剂PVP质量分数为1.66%、油胺物质的量为30 mmol、200℃下保温8 h时,可获得粒径约为30~40 nm纯相氧化镍,具有最佳电化学活性,交换电流密度为J0=1.23×10-2 mA·cm-2.

本文引用格式

陈甜 , 杨英 , 赵婉玉 , 潘德群 , 朱从潭 , 林飞宇 , 郭学益 . 溶剂热法制备纳米氧化镍及其表征[J]. 化学学报, 2019 , 77(5) : 447 -454 . DOI: 10.6023/A19010033

Abstract

Nano-scale nickel oxide materials were prepared by solvothermal method using nickel acetylacetonate, oleic acid and oleylamine as raw materials, octadecene as solvent and polyvinylpyrrolidone as surfactant. The effects of the ratio of reactants ratio, insulation time, surfactant and the mass of oleylamine on the microstructure, particle size, morphology, optics and catalytic properties of the product were investigated by X-ray diffraction (XRD), transmission electron microscope (TEM), ultraviolet-visible spectroscopy (UV-Vis) spectral analysis, and Tafel test. The specific experimental operations were:the oleic acid (OA) and 1-octadecene (ODE) was added into four flasks (500 mL) with heating and stirring. Nickel acetylacetonate was added when the temperature raise to 50℃, then continuously stirring for 60 minutes at 120℃ before a certain amount of oleylamine (OAm) was added to the reaction system. The mixed solution was poured into the inner liner of the high temperature reactor. The reactor was covered and transferred to the electro-thermostatic blast oven for a period of time and then cooled to room temperature. The main research results were obtained:(1) The boundary of the original particles became smoothed after sintering, and the spherical particles become flake-shaped which might be attributed to the residual organic covering so the size of nickel oxide nanoparticles changed from the original 40~45 nm to 30~40 nm. (2) With the addition of PVP, the content of NiO phase increased and the particle size was controlled within 40~45 nm. The UV-Vis test showed that NiO belonged to direct band gap and the band gap width was 3.5~3.7 eV. (3) The Tafel analysis showed that the best catalytic activity with exchange current density J0 was 1.23×10-2 mA·cm-2, where pure NiO could be obtained when the reactant ratio of n[Ni(acac)2]:n(OA)=1:2, the additive PVP mass fraction was of 1.66%, the amount of oleylamine was of 30 mmol, and the temperature was of 200℃ for 8 h.

参考文献

[1] Lin, X.-Y.; Wang, J. Acta Chim. Sinica 2017, 75, 979(in Chinese). (林潇羽, 王璟, 化学学报, 2017, 75, 979.)
[2] Gu, T.-H.; Shi, J.-M.; Hua, Y.-L.; Liu, J.; Wang, W.; Zhang, W.-X. Acta Chim. Sinica 2017, 75, 991(in Chinese). (顾天航, 石君明, 滑熠龙, 刘静, 王伟, 张伟贤, 化学学报, 2017, 75, 991.)
[3] Guo, X.-R.; Yin, Y.-G.; Tan, Z.-Q.; Liu, J.-F.; Jiang, G.-B. Acta Chim. Sinica 2018, 76, 387(in Chinese). (郭肖茹, 阴永光, 谭志强, 刘景富, 江桂斌, 化学学报, 2018, 76, 387.)
[4] Zhang, W.; Deng, W. Chin. J. Org. Chem. 2018, 38, 3002(in Chinese). (张薇, 邓维, 有机化学, 2018, 38, 3002.)
[5] Wang, L.; Zhao, D.-D.; Liu, X.; Yu, P.; Fu, H.-G. Acta Chim. Sinica 2017, 75, 231(in Chinese). (王蕾, 赵冬冬, 刘旭, 于鹏, 付宏刚, 化学学报, 2017, 75, 231.)
[6] Martin, C. R. Science 1994, 266, 1961.
[7] Zhao, J.; Chen, Z. J. Comput. Theor. Nanosci. 2011, 8, 2395.
[8] Liu, L.; Li, Y.; Yuan, S.; Ge, M.; Ren, M.; Sun, C.; Zhou, Z. J. Phys. Chem. C 2010, 114, 1.
[9] Huang, X.; Tan, C.-L.; Yin, Z.-Y.; Zhang, H. Adv. Mater. 2014, 26, 14.
[10] Sawatzky, G. A.; Allen, J. W. Phys. Rev. Lett. 1984, 53, 24.
[11] Thota, S.; Shim, J. H.; Seehra, M. S. J. Appl. Phys. 2013, 114, 21.
[12] Das, N.-S.; Santra, S.; Banerjee, D.; Das, G.-C.; Chattopadhyay, K. K. Mater. Res. Express. 2014, 1, 2.
[13] Echresh, A.; Chan, O.-C.; Shoushtari, M.-Z.; Khranovskyy, V.; Nur, O.; Willander, M. J. Alloys Compd. 2015, 632, 25.
[14] Hashemzadeh, F.; Gaffarinejad, A.; Rahimi, R. J. Hazard. Mater. 2015, 286, 9.
[15] Wang, G.; Yang, D.-M.; Liu, J. Mater. Rev. 2017, 31, 5(in Chinese). (王刚, 杨定明, 刘江, 材料导报, 2017, 31, 5.)
[16] Jang, Y.; Chen, D.-D.; Song, J.-S.; Jiao, Z.; Ma, Q.-L.; Zhang, H.-J.; Cheng, L.-L.; Zhao, B.; Chu, Y.-L. Electrochim. Acta 2013, 91, 3.
[17] Yan, X.-Y.; Tong, X.-L.; Wang, J.; Gong, C.-W.; Zhang, M.-G.; Liang, L.-P. Mater. Lett. 2013, 95, 3.
[18] Wang, H.; Zeng, X.-W.; Huang, Z.-F.; Zhang, W.-J.; Qiao, X.-F.; Hu, B.; Zou, X.-P.; Wang, M.-K.; Cheng, Y.-B.; Chen, W. ACS Appl. Mater. Interfaces 2014, 6, 15.
[19] Song, C.; Dong, X.-T.; Wang, J.-X.; Liu, G.-X. Acta Chim. Sinica 2011, 69, 20(in Chinese). (宋超, 董相廷, 王进贤, 刘桂霞, 化学学报, 2011, 69, 20.)
[20] Jia, W.; Xu, M.-W.; Lei, C.; Bao, S.-J.; Jia, D.-Z. Acta Chim. Sinica 2011, 69, 15(in Chinese). (贾巍, 徐茂文, 雷超, 包淑娟, 贾殿赠, 化学学报, 2011, 69, 15.)
[21] Zhang, H.-J.; Zhang, X.-G.; Yuan, C.-Z.; Gao, B.; Sun, K.; Fu, Q.-B.; Lu, X.-J.; Jiang, J.-C. Acta Phys.-Chim. Sin. 2011, 27, 2(in Chinese). (张海军, 张校刚, 原长洲, 高博, 孙康, 傅清宾, 卢向军, 蒋剑春, 物理化学学报, 2011, 27, 2.)
[22] Jiang, L.; Huang, H.; Wang, C.-T.; Zhang, W.-K.; Gan, Y.-P.; Tao, X.-Y. Acta Phys.-Chim. Sin. 2016, 26, 02(in Chinese). (蒋磊, 黄辉, 王春涛, 张文魁, 甘永平, 陶新永, 物理化学学报, 2016, 26, 02.)
[23] Ma, X.-J.; Wang, N.-N.; Qian, Y.-T.; Bai, Z.-C. Mater. Lett. 2016, 168, 5.
[24] Miao, R.-Y.; Zeng, W. Mater. Lett. 2016, 171, 200.
[25] Turgut, G.; Duman, S. J. Alloys Compd. 2016, 664, 547.
[26] Zhao, J.-F.; Tan, Y.; Su, K.; Zhao, J.-J.; Yang, C.; Sang, L.-L.; Lu, H.-B.; Chen, J.-H. Appl. Surf. Sci. 2015, 337, 111.
[27] Patil, R.-A.; Devan, R.-S.; Lin, J.-H.; Ma, Y.-R.; Patil, P.-S.; Liou, Y. Sol. Energy Mater. Sol. Cells 2013, 112, 91.
[28] Jiang, H.; Jian, J.-W.; Chen, K.; Gu, Y.-Y. J. Chin. Ceram. Soc. 2012, 40, 12.
[29] Ma, X.-J.; Wang, N.-N.; Qian, Y.-T.; Bai, Z.-C. Mater. Lett. 2016, 168, 5.
[30] Cai, G.-F.; Wang, X.; Cui, M.-Q.; Darmawan, P.; Wang, J.-X.; Eh, A. L.-S.; Lee, P.-S. Nano Energy 2015, 12, 258.
[31] Yang, P.-P.; Yuan, X.-L.; Hu, H.-C.; Liu, Y.-L.; Zheng, H.-W.; Yang, D.; Chen, L.; Cao, M.-H.; Yong, X.; Min, Y.-L.; Li, Y.-G.; Zhang, Q. Adv. Funct. Mater. 2018, 28, 1.
[32] Zhang, Q.; Zheng, Z.; Liu, C.-X.; Liu, C.-Q.; Tan, T.-W. Colloids Surf., B 2016, 140, 446.
[33] Liu, J.; Sun, Z.-K.; Deng, Y.-H.; Zou, Y.; Li, C.-Y.; Guo, X.-H.; Xiong, L.-Q.; Gao, Y.; Li, F.-U.; Zhao, D.-Y. Angew. Chem., Int. Ed. 2009, 48, 32.
[34] Mali, S.-S.; Kim, H.; Kim, H.-H.; Shim, S.-E.; Hong, C.-K. Mater. Today 2018, 21, 483.
[35] Liu, Z.-H.; Z, A.-L.; C, F.-S.; Tao, L.-M.; Zhou, Y.-H.; Zhao, Z.-X.; Chen, Q.; Cheng, Y.-B.; Zhou, H.-P. J. Mater. Chem. A 2017, 5, 6597.
[36] (a) Jeng, J.-Y.; Chen, K.-C.; Chiang, T.-Y.; Lin, P.-Y.; Tsai, T.-D.; Chang, Y.-C.; Guo, T.-F.; Chen, P.; Wen, T.-C.; Hsu, Y.-J. Adv. Mater. 2014, 26, 4107.
(b) Tian, H.-N.; Xu, B.; Chen, H.; Johansson, E. M. J.; Boschloo, G. ChemSusChem 2014, 7, 8.
[37] Irwin, M.-D.; Buchholz, B.; Hains, A.-W.; Chang, R. P. H.; Marks, T.-J. Proc. Natl. Acad. Sci. 2008, 105, 8.
[38] Zhu, Z.-L.; Bai, Y.; Zhang, T.; Liu, Z.-K.; Long, X.; Wei, Z.-H.; Wang, Z.-L.; Zhang, L.-X.; Wang, J.-N.; Yan, F.; Yang, S.-H. Angew. Chem. 2014, 26, 46.
[39] Guo, X.-Y.; Wang, W.-J.; Yang, Y.; Tian, Q.-H. CrystEngComm 2016, 10, 1039.
[40] Su, D.; Ford, M.; Wang, G.-X. Sci. Rep. 2012, 2, 924.
[41] Ahn, Y.; Jang, J.; Son, J.-Y. J. Electroceram. 2017, 38, 1.
[42] Fan, J.-L.; Wang, S.-Z.; Sun, W.; Guo, S.-G.; Kang, Y.; Du, J.-J.; Peng, X.-J. CrystEngComm 2016, 64, 3.
[43] Saha, S.; Chhetri, S.; Khanra, P.; Samanta, P.; Koo, H.; Murmu, N.-C.; Kuila, T. J. Energ. Storage 2016, 6, 22.
[44] Abu-Zied, B.-M.; Asiri, A.-M. Thermochim. Acta 2017, 649, 54.
[45] Gao, J.; Yang, Y.; Zhang, Z.; Yan, J.-Y.; Lin, Z.-H.; Guo, X.-Y. Nano Energy 2016, 26, 123.
[46] Li, Y.-J.; Quan, F.-X.; Chen, L.; Zhang, W.-J.; Yu, H.-B.; Chen, C.-F. RSC Adv. 2013, 4, 1895.
[47] Liu, Z.-H.; Zhang, M.; Xu, X.-B.; Bu, L.-L.; Zhang, W.-J.; Li, W.-H.; Zhao, Z.-X.; Wang, M.-K.; Cheng, Y.-B.; He, H.-S. Dalton Trans. 2015, 44, 3967.
[48] Gao, W.; Xia, Z.-M.; Cao, F.-X.; Ho, J.-C.; Jiang, Z.; Qu, Y.-Q. Adv. Funct. Mater. 2018, 28, 1706056.

文章导航

/