废水中有机污染物降解机理的研究方法
收稿日期: 2019-03-01
网络出版日期: 2019-05-08
基金资助
项目受国家自然科学基金(No.51708238)资助.
Research Methods for the Degradation Mechanism of Organic Pollutants in Wastewater
Received date: 2019-03-01
Online published: 2019-05-08
Supported by
Project supported by the National Natural Science Foundation of China (No. 51708238).
我国废水排放总量较大,且废水中含有的多种有机污染物一直是人类生命健康的潜在威胁,因此对废水处理的研究必不可少,而理解废水中有机污染物的降解机理是处理各种废水的基础.本综述概述了国内外针对各种有机污染物降解机理的研究方法,主要包括实验手段和计算模拟两大类.实验手段中主要采用光谱分析技术检测有机污染物降解过程中生成的中间产物,进而推测有机污染物的降解路径.但是由于实验条件和实验方法的不同,对于同种物质的降解机理研究,不同的实验结果存在着争议.基于量子化学计算、定量构效关系模型(QSAR)、定量结构-生物降解性能关系模型(QSBR)、统计分子碎化模型(SMF)等计算模拟方法为有机污染物降解机理的研究提供了新的方法.将实验手段和计算模拟有机结合起来,可为有机污染物的降解机理研究提供参考和指导.
李午阳 , 徐乐瑾 . 废水中有机污染物降解机理的研究方法[J]. 化学学报, 2019 , 77(8) : 705 -716 . DOI: 10.6023/A19030073
The total discharge of Chinese industrial wastewater is large, and the various organic pollutants contained in wastewater have always been a potential threat to human health. Therefore, it is necessary to develop various technologies for wastewater treatment, especially to study the degradation mechanism of organic pollutants. This paper summarizes the research methods for the degradation mechanism of various organic pollutants in wastewater, including experimental methods and computational simulations. In the experiments, spectral analysis techniques are mainly used to detect the intermediates produced during the degradation of organic pollutants, and then the degradation pathways of organic pollutants are deduced. However, due to the different experimental conditions and experimental methods, the degradation pathways of the same pollutant obtained from the different experiments are controversial. Computational simulations, based on the quantum chemical calculation, quantitative structure-activity relationship model, quantitative structure-biodegradation relationship model and statistical molecular fragmentation model, provide a new method for studying the degradation mechanism of organic pollutants. The combination of experimental methods and computational simulations will provide the foundation and guidance for exploring the degradation mechanism of organic pollutants.
[1] Rueda Márquez, J. J.; Levchuk, I.; Sillanpää, M. Catalysts 2018, 8, 673.
[2] Ma, L.; Jin, C. Y.; An, L. Y.; Huang, L.; Li, L. J.; Jin, H. B.; Liang, B.; Wei, H. Z.; Sun, C. L. Catal. Commun. 2019, 120, 59.
[3] García-Muñoz, P.; Pliego, G.; Zazo, J. A.; Casas, J. A. J. Environ. Chem. Eng. 2018, 6, 7312.
[4] Garcia-Costa, A. L.; Lopez-Perela, L.; Xu, X. Y.; Zazo, J. A.; Rodriguez, J. J.; Casas, J. A. Environ. Sci. Pollut. R 2018, 25, 27748.
[5] Nidheesh, P. V.; Zhou, M. H.; Oturan, M. A. Chemosphere 2018, 197, 210.
[6] Alcocer, S.; Picos, A.; Uribe, A. R.; Pérez, T.; Peralta-Hernández, J. M. Chemosphere 2018, 205, 682.
[7] Oturan, N.; Aravindakumar, C. T.; Olvera-Vargas, H.; Sunil Paul, M. M.; Oturan, M. A. Environ. Sci. Pollut. R 2018, 25, 20363.
[8] Zhu, Y. P.; Wu, M.; Gao, N. Y.; Chu, W. H.; Li, K.; Chen, S. Chem. Eng. J. 2018, 335, 520.
[9] Qu, R. J.; Li, C. G.; Liu, J. Q.; Xiao, R. Y.; Pan, X. X.; Zeng, X. L.; Wang, Z. Y.; Wu, J. C. Environ. Sci. Technol. 2018, 52, 7220.
[10] Zhang, F. Z.; Wu, C. F.; Hu, Y.; Wei, C. H. Prog. Chem. 2014, 26, 1079. (张峰振, 吴超飞, 胡芸, 韦朝海, 化学进展, 2014, 26, 1079.)
[11] Cheng, Z. W.; Yang, B. W.; Chen, Q. C.; Tan, Y. J.; Gao, X. P.; Yuan, T.; Shen, Z. M. Chemosphere 2018, 212, 828.
[12] Deniere, E.; Van Hulle, S.; Van Langenhove, H.; Demeestere, K. J. Hazard. Mater. 2018, 360, 204.
[13] Kidak, R.; Dogan, S.; Ultrason. Sonochem. 2018, 40, 131.
[14] Leal, T. W.; Lourenço, L. A.; Brandão, H. D.; da Silva, A.; de Souza, S. M. A. G. U.; de Souza, A. A. U. J. Hazard. Mater. 2018, 359, 96.
[15] Yang, L.; Tang, X. F.; Peng, X.; Qian, D.; Guo, Q. N.; Guo, H. Pathol. Res. Pract. 2018, 214, 1081.
[16] Huang, D. W.; He, J.; Gu, Y. W.; He, F. Acta Chim. Sinica 2017, 75, 866. (黄丹维, 何佳, 谷亚威, 何锋, 化学学报, 2017, 75, 866.)
[17] Wei, Y.; Zou, Q. C.; Ye, P.; Wang, M. Y.; Li, X. X.; Xu, A. H. Chemosphere 2018, 208, 358.
[18] Choi, J.; Cui, M.; Lee, Y.; Kim, J.; Son, Y.; Khim, J. Chem. Eng. J. 2018, 338, 323.
[19] Khatri, J.; Nidheesh, P. V.; Anantha Singh, T. S.; Suresh Kumar, M. Chem. Eng. J. 2018, 348, 67.
[20] Han, Q.; Yang, S. Y.; Yang, X.; Shao, X. T.; Niu, R.; Wang, L. L. Prog. Chem. 2012, 24, 144. (韩强, 杨世迎, 杨鑫, 邵雪停, 牛瑞, 王雷雷, 化学进展, 2012, 24, 144.)
[21] Halliwell, B. Drugs 1991, 42, 569.
[22] Gomes, A.; Fernandes, E.; Lima, J. J. Biochem. Bioph. Meth. 2005, 65, 45.
[23] Tai, C.; Gu, X. X.; Zou, H.; Guo, Q. H. Talanta 2002, 58, 661.
[24] Garcia-Montano, J.; Perez-Estrada, L.; Oller, I.; Maldonado, M. I.; Torrades, F.; Peral, J. J. Photochem. Photobiol. A-Chem. 2008, 195, 205.
[25] Pera-Titus, M.; Garcia-Molina, V.; Banos, M. A.; Gimenez, J.; Esplugas, S. Appl. Catal. B-Environ. 2004, 47, 219.
[26] Shin, S.; Yoon, H.; Jang, J. Catal. Commun. 2008, 10, 178.
[27] Xu, L. J.; Wang, J. L. Environ. Sci. Technol. 2012, 46, 10145.
[28] Wan, Z.; Wang, J. L. J. Hazard. Mater. 2017, 324, 653.
[29] Liu, Y.; Fan, Q.; Wang, J. L. J. Hazard. Mater. 2018, 342, 166.
[30] Lyu, L.; Yu, G. F.; Zhang, L. L.; Hu, C.; Sun, Y. Environ. Sci. Technol. 2018, 52, 747.
[31] Wang, J. L.; Xu, L. J. Crit. Rev. Environ. Sci. Technol. 2012, 42, 251.
[32] Rosenfeldt, E. J.; Linden, K. G.; Canonica, S.; von Gunten, U. Water Res. 2006, 40, 3695.
[33] Holcman, J.; Sehested, K. J. Phys. Chem. 1977, 81, 1963.
[34] Jolly, G. S.; Paraskevopoulos, G.; Singleton, D. L. Int. J. Chem. Kinet. 1985, 17, 1.
[35] Davies, A. K.; Land, E. J.; Navaratnam, S.; Parsons, B. J.; Phillips, G. O. J. Chem. Soc. Faraday T. 1979, 75, 22.
[36] Xu, L. J.; Wang, J. L. Sep. Purif. Technol. 2015, 149, 255.
[37] Xu, L. J.; Wang, J. L. J. Hazard. Mater. 2011, 186, 256.
[38] Xu, L. J.; Yang, Y. J.; Li, W. Y.; Tao, Y. J.; Sui, Z. G.; Song, S.; Yang, J. Sci. Total Environ. 2019, 658, 219.
[39] Xu, L. J.; Meng, X.; Li, M.; Li, W. Y.; Sui, Z. G.; Wang, J. L.; Yang, J. Chem. Eng. J. 2019, 361, 1520.
[40] Xu, L. J.; Li, W. Y.; Désesquelles, P.; Van-Oanh, N. T.; Thomas, S.; Yang, J. J. Phys. Chem. A 2019, 123, 933.
[41] Lei, L. C.; Dai, Q. Z.; Zhou, M. H.; Zhang, X. W. Chemosphere 2007, 68, 1135.
[42] Katsumata, H.; Kawabe, S.; Kaneco, S.; Suzuki, T.; Ohta, K. J. Photochem. Photobiol. A-Chem. 2004, 162, 297.
[43] Kouloumbos, V. N.; Tsipi, D. F.; Hiskia, A. E.; Nikolic, D.; van Breemen, R. B. J. Am. Soc. Mass Spectrom. 2003, 14, 803.
[44] An, T. C.; An, J. B.; Yang, H.; Li, G. Y.; Feng, H. X.; Nie, X. P. J. Hazard. Mater. 2011, 197, 229.
[45] Prevot, A. B.; Baiocchi, C.; Brussino, M. C.; Pramauro, E.; Savarino, P.; Augugliaro, V.; Marcì, G.; Palmisano, L. Environ. Sci. Technol. 2001, 35, 971.
[46] Araña, J.; Rendón, E. T.; Rodríguez, J. M. D.; Melián, J. A. H.; Díaz, O. G.; Peña, J. P. Chemosphere 2001, 44, 1017.
[47] Huang, F. M.; Chen, L.; Wang, H. L.; Yan, Z. C. Chem. Eng. J. 2010, 162, 250.
[48] Ju, Y. M.; Yang, S. G.; Ding, Y. C.; Sun, C.; Gu, C. G.; He, Z.; Qin, C.; He, H.; Xu, B. J. Hazard. Mater. 2009, 171, 123.
[49] Daneshvar, N.; Salari, D.; Khataee, A. R. J. Photochem. Photobiol. A-Chem. 2004, 162, 317.
[50] Annabi, C.; Fourcade, F.; Soutrel, I.; Geneste, F.; Floner, D.; Bellakhal, N.; Amrane, A. J. Environ. Manage. 2016, 165, 96.
[51] Song, S.; Xu, L. J.; He, Z. Q.; Chen, J. M.; Xiao, X. Z.; Yan, B. Environ. Sci. Technol. 2007, 41, 5846.
[52] Drinks, E.; Lepeytre, C.; Lorentz, C.; Dunand, M.; Mangematin, S.; Dappozze, F.; Guillard, C. Chem. Eng. J. 2018, 352, 143.
[53] Bonancéa, C. E.; do Nascimento, G. M.; de Souza, M. L.; Temperini, M. L. A.; Corio, P. Appl. Catal. B 2008, 77, 339.
[54] Oturan, M. A.; Guivarch, E.; Oturan, N.; Sirés, I. Appl. Catal. B 2008, 82, 244.
[55] Zhang, F. F.; Yediler, A.; Liang, X. M. Chemosphere 2007, 67, 712.
[56] Song, S.; Ying, H. P.; He, Z. Q.; Chen, J. M. Chemosphere 2007, 66, 1782.
[57] Vajnhandl, S.; Le Marechal, A. M. J. Hazard. Mater. 2007, 141, 329.
[58] Guo, Z. F.; Ma, R. X.; Li, G. J. Chem. Eng. J. 2006, 119, 55.
[59] Sun, J. Contemporary Chemical Industry 2017, 09, 4. (孙静, 当代化工研究, 2017, 09, 4.)
[60] Xiao, W.; Jiang, H. S. Environ. Sci. Tech. 2004, 05, 26. (肖文, 姜红石, 环境科学与技术, 2004, 05, 26.)
[61] Mosi, A. A.; Reimer, K. J.; Eigendorf, G. K. Talanta 1997, 44, 985.
[62] Nicol, S.; Dugay, J.; Hennion, M. C. J. Sep. Sci. 2001, 24, 451.
[63] Meng, Z. L.; Qi, Y. Y.; Liu, R. M. Chemical Analysis and Meterage 2006, 15, 99. (孟兆玲, 齐元英, 柳仁民, 化学分析计量, 2006, 15, 99.)
[64] Kovalczuk, T.; Jech, M.; Poustka, J.; Hajslova, J. Anal. Chim. Acta 2006, 577, 8.
[65] Churchwell, M. I.; Twaddle, N. C.; Meeker, L. R.; Doerge, D. R. J. Chromatogr. B 2005, 825, 134.
[66] Zhu, N. W.; Gu, L.; Yuan, H. P.; Lou, Z. Y.; Wang, L.; Zhang, X. Water Res. 2012, 46, 3859.
[67] Gosetti, F.; Chiuminatto, U.; Mazzucco, E.; Calabrese, G.; Gennaro, M. C.; Marengo, E. Food Chem. 2013, 136, 617.
[68] Gu, L.; Song, F. Y.; Zhu, N. W. Appl. Catal. B Environ. 2011, 110, 186.
[69] Siegel, M. G.; Hahn, P. J.; Dressman, B. A.; Fritz, J. E.; Grunwell, J. R.; Kaldor, S. W. Tetrahedron Lett. 1997, 38, 3357.
[70] Sleiman, M.; Vildozo, D.; Ferronato, C.; Chovelon, J. M. Appl. Catal. B 2007, 77, 1.
[71] Hammami, S.; Oturan, N.; Bellakhal, N.; Dachraoui, M.; Oturan, M. A. J. Electroanal. Chem. 2007, 610, 75.
[72] Smith, J. G. Organic Chemistry, McGraw-Hill Education, New York, 2011, pp. 463~488.
[73] Rabi, I. I.; Zacharias, J. R.; Millman, S.; Kusch, P. Phys. Rev. 1938, 53, 131.
[74] Jeanmaire, D. L.; Van Duyne, R. P. J. Electroanal. Chem. 1977, 84, 1.
[75] Lombardi, J. R.; Birke, R. L. J. Phys. Chem. C 2008, 112, 5605.
[76] Hisaindee, S.; Meetani, M. A.; Rauf, M. A. Trac-Trends Anal. Chem. 2013, 49, 31.
[77] Fernández, C.; Larrechi, M. S.; Callao, M. P. Trac-Trends Anal. Chem. 2010, 29, 1202.
[78] Wang, Y.; Liang, J. B.; Liao, X. D.; Wang, L. S.; Loh, T. C.; Dai, J.; Ho, Y. W. Ind. Eng. Chem. Res. 2010, 49, 3527.
[79] Neafsey, K.; Zeng, X.; Lemley, A. T. J. Agric. Food Chem. 2010, 58, 1068.
[80] Dai, Q. Z.; Zhou, J. Z.; Weng, M. L.; Luo, X. B.; Feng, D. L.; Chen, J. M. Sep. Purif. Technol. 2016, 166, 109.
[81] Pérez, T.; Garcia-Segura, S.; El-Ghenymy, A.; Nava, J. L.; Brillas, E. Electrochim. Acta 2015, 165, 173.
[82] Mardirossian, N.; Head-Gordon, M. Phys. Chem. Chem. Phys. 2014, 16, 9904.
[83] Vos, A. M.; Nulens, K. H. L.; Proft, F. D.; Schoonheydt, R. A.; Geerlings, P. J. Phys. Chem. B 2002, 106, 2026.
[84] Jasmine, G. F.; Amalanathan, M.; Roy, S. D. D. J. Mol. Struct. 2016, 1112, 63.
[85] Sajan, D.; Sockalingum, G. D.; Manfait, M.; Joel, I. H.; Jayakumar, V. S. J. Raman Spectrosc. 2008, 39, 1772.
[86] Carrier, M.; Guillard, C.; Besson, M.; Bordes, C.; Chermette, H. J. Phys. Chem. A 2009, 113, 6365.
[87] Zhao, L. D. M.S. Thesis, Northwest University, Xi'an, 2016(in Chinese). (赵理达, 硕士论文, 西北大学, 西安, 2016.)
[88] Parr, R. G.; Yang, W. J. Am. Chem. Soc. 1984, 106, 4049.
[89] Yang, W.; Parr, R. G. Proc. Natl. Acad. Sci. U. S. A. 1985, 87, 6723.
[90] Yang, W.; Parr, R. G. Pucci, R. J. Chem. Phys. 1984, 81, 2862.
[91] Du, J. S.; Guo, W. Q.; Li, X. F.; Li, Q.; Wang, B.; Huang, Y. L.; Ren, N. Q. J. Taiwan Inst. Chem. Eng. 2017, 81, 232.
[92] Gong, C.; Sun, X. M.; Zhang, C. X. Environ. Chem. 2013, 10, 111.
[93] Wang, Y. W.; Zhang, X. Q.; Du, J.; Hua, S.; Guo, J. M. Biotechnology 2015, 14, 233.
[94] Armakovi?, S.; Armakovi?, S. J.; Abramovi?, B. F. J. Mol. Model. 2016, 22, 240.
[95] Mishra, R.; Srivastava, A.; Sharma, A.; Tandon, P.; Baraldi, C.; Gamberini, M. C. Spectrochim. Acta A 2013, 101, 335.
[96] Wang, W. P.; Wang, S. B.; Xie, X. F.; Lv, Y. F.; Ramani, V. Int. J. Hydrogen Energy 2014, 39, 14355.
[97] He, X.; Zeng, Q.; Zhou, Y.; Zeng, Q. X.; Wei, X. F.; Zhang, C. Y. J. Phys. Chem. A 2016, 120, 3747.
[98] Zhou, Y.; Yang, Z. L.; Yang, H.; Zhang, C. Y.; Liu, X. Q. J. Mol. Model. 2017, 23, 139.
[99] Zhou, Y.; Liu, X. Q.; Jiang, W. D.; Shu, Y. J. J. Mol. Model. 2018, 24, 44.
[100] Wang, S.; Song, X. D.; Hao, C.; Gao, Z. X.; Chen, J. W.; Qiu, J. S. Chemosphere 2015, 122, 62.
[101] Liu, Y.; Yang, B. L.; Yi, C. H. Ind. Eng. Chem. Res. 2013, 52, 6933.
[102] Bruzzone, S.; Chiappe, C.; Focardi, S. E.; Pretti, C.; Renzi, M. Chem. Eng. J. 2011, 175, 17.
[103] Redding, A. M.; Cannon, F. S.; Snyder, S. A.; Vanderford, B. J. Water Res. 2009, 43, 3849.
[104] Fang, D. Q.; Wu, W. J.; Zhang, R.; Zeng, G. H.; Zheng, K. C. Chem. Biol. Drug Des. 2012, 80, 134.
[105] Zhang, Y.; Wei, D. B.; Huang, R.; Yang, M.; Zhang, S. J.; Dou, X. M.; Wang, D. S.; Vimonses, V. Chem. Eng. J. 2011, 166, 624.
[106] Dimitrova, N.; Dimitrov, S.; Georgieva, D.; Van Gestel, C. A. M.; Hankard, P.; Spurgeon, D.; Li, H.; Mekenyan, O. Sci. Total Environ. 2010, 408, 3787.
[107] Li, X. H.; Zhao, W. X.; Li, J.; Jiang, J. Q.; Chen, J. J.; Chen, J. W. Chemosphere 2013, 92, 1029.
[108] Barua, N.; Sarmah, P.; Hussain, I.; Deka, R. C.; Buragohain, A. K. Chem. Biol. Drug Des. 2012, 79, 553.
[109] Cárdenas, C.; Rabi, N.; Ayers, P. W.; Morell, C.; Jaramillo, P.; Fuentealba, P. J. Phys. Chem. A 2009, 113, 8660.
[110] Rokhina, E. V.; Suri, R. P. S. Sci. Total Environ. 2012, 417-418, 280.
[111] Zhu, H. C.; Shen, Z. M.; Tang, Q. L.; Ji, W. C.; Jia, L. J. Chem. Eng. J. 2014, 255, 431.
[112] Han, H. J.; Xu, P.; Jia, S. Y.; Zhuang, H. F.; Hou, B. L.; Wang, D. X.; Li, K.; Zhao, Q.; Ma, W. C. Journal of Harbin Institute of Technology 2015, 47, 30. (韩洪军, 徐鹏, 贾胜勇, 庄海峰, 侯保林, 王德欣, 李琨, 赵茜, 马文成, 哈尔滨工业大学学报, 2015, 47, 30.)
[113] He, F.; Yuan, X.; Cheng, X. J.; Guo, Y. P.; Zhao, Y. H. China Environmental Science 2001, 21, 152. (何菲, 袁星, 程香菊, 郭亚萍, 赵元慧, 中国环境科学, 2001, 21, 152.)
[114] Li, Y. M.; Gu, G. W.; Zhao, J. F. Journal of Tongji University 2001, 29, 720. (李咏梅, 顾国维, 赵建夫, 同济大学学报, 2001, 29, 720.)
[115] Devillers, J.; Pandard, P.; Richard, B. Abstr. Pap. Am. Chem. Soc. 2013, 246, 76.
[116] Gross, D. H. E.; Hervieux, P. A. Rep. Prog. Phys. 1990, 53, 605.
[117] Aguirre, N. F.; Díaz-Tendero, S.; Hervieux, P. A.; Alcamí, M.; Martín, F. J. Chem. Theory Comput. 2017, 13, 992.
/
〈 |
|
〉 |