电氧化促进的钯催化的芳烃C(sp 2)—H键氯代反应
收稿日期: 2019-04-19
网络出版日期: 2019-05-08
基金资助
项目受国家自然科学基金(Nos. 21772222);项目受国家自然科学基金(21821002);广东省教育厅基金资助.(Nos. 2017KTSCX185);广东省教育厅基金资助.(2017KSYS010);广东省教育厅基金资助(2016KCXTD005)
Palladium-Catalyzed ortho-Selective C—H Chlorination of Arenes Using Anodic Oxidation
Received date: 2019-04-19
Online published: 2019-05-08
Supported by
Project supported by the National Natural Science Foundation of China(Nos. 21772222);Project supported by the National Natural Science Foundation of China(21821002);Project supported by the National Natural Science Foundation of China(Nos. 2017KTSCX185);Project supported by the National Natural Science Foundation of China(2017KSYS010);Project supported by the National Natural Science Foundation of China(2016KCXTD005)
芳香族卤代物是非常重要的合成砌块, 卤化反应是有机合成中最基本也是最重要的反应之一. 本工作利用2-(吡啶基)异丙基胺(PIP胺)作为双齿导向基团, 以LiCl作为卤素来源, 通过电化学阳极氧化的策略成功实现了钯催化的芳烃邻位C(sp 2)—H键的氯代反应. 此反应条件官能团耐受性强, 底物适用范围广, 同时能兼容噻吩等杂芳环类底物, 为合成(杂)芳基氯代物提供了一种简洁高效的方法. 该反应可以安全的放大到克级制备, 显示了潜在的工业应用前景. 通过连续的邻位碳氢键溴代和氯代反应还能得到高度复杂的2,5,6-三取代的苯甲酰胺类化合物.
杨启亮 , 王向阳 , 翁信军 , 杨祥 , 徐学涛 , 童晓峰 , 方萍 , 伍新燕 , 梅天胜 . 电氧化促进的钯催化的芳烃C(sp 2)—H键氯代反应[J]. 化学学报, 2019 , 77(9) : 866 -873 . DOI: 10.6023/A19040135
Aryl halides are key building blocks in organic synthesis for the construction of valuable natural products, medicinal and agricultural chemicals via transition metal-catalyzed coupling or substitution reactions. Halogenation is one of the most fundamental and important reactions in organic synthesis. Electrochemical transition-metal-catalyzed C—H functionalization has emerged as a powerful tool for molecular synthesis with the prospect of avoiding the use of costly and toxic oxidants or reductants, thereby reducing the footprint of undesirable, toxic byproducts. The palladium-catalyzed electrochemical C—H chlorination of benzamide derivatives directed by PIP amine directing group under divided cells has been demonstrated, in which readily available inorganic halides salts serve as halogen sources. The reaction features a broad substrate scope, high functional group tolerance, and compatibility of thiophene substrates. This reaction could be conducted on a gram scale, which is important for future application. Additionally, the sequential bromination and chlorination of C(sp 2)—H bond constructs highly functionalized aromatic carboxylic acid derivatives. The typical procedure is as follows: The electrolysis was carried out in an H-type divided cell (anion-exchange membrane), with a RVC anode (10 mm×10 mm×12 mm) and a platinum cathode (10 mm×10 mm×0.2 mm). The anodic chamber was charged with Pd(OAc)2 (5.6 mg, 0.025 mmol, 10 mol%) and benzamide derivative (0.25 mmol, 1.0 equiv.) and dissolved in DMF (10 mL). LiCl (847.8 mg, 20.0 mmol) was added in the cathodic chamber and dissolved in water (10 mL). Then the reaction mixture was electrolyzed under a constant current of 5 mA at 90 ℃ until the complete consumption of the starting material as monitored by TLC or 1H NMR. After the reaction, EtOAc (50 mL) was added to dilute the mixture and then washed with water (20 mL×3) and then with brine (20 mL). The organic fraction was dried over Na2SO4 and concentrated. The resulting residue was purified by silica gel flash chromatography to give the chlorination product.
| [1] | (a) Butler, A.; Walker, J. V. Chem. Rev. 1993, 93, 1937 |
| [1] | (b) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew Chem., Int. Ed. 2005, 44, 4442. |
| [2] | For selected reviews see: (a) Hassan, J.; Se'vignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M . Chem. Rev. 2002, 102, 1359 |
| [2] | (b) Littke, A. F.; Fu, G. C. Angew Chem., Int. Ed. 2002, 41, 4176; |
| [2] | (c) Corbet, J. P.; Mignani, G . Chem. Rev. 2006, 106, 2651; |
| [2] | (d) Yin, L.-X.; Liebscher, J . Chem. Rev. 2007, 107, 133. |
| [3] | For a review on an ortho-lithiation approach, see: Snieckus, V. Chem. Rev . 1990, 90, 879. |
| [4] | Hodgson, H. H. Chem. Rev. 1947, 40, 251. |
| [5] | De La Mare, P. B. D . Electrophilic Halogenation, Cambridge University Press, New York, 1976. |
| [6] | For selected reviews on transition-metal-catalyzed C—H functionalization, see: (a) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074 |
| [6] | (b) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew Chem., Int. Ed. 2009, 48, 5094; |
| [6] | (c) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q . Chem. Soc. Rev. 2009, 38, 3242; |
| [6] | (d) Lyons, T. W.; Sanford, M. S . Chem. Rev. 2010, 110, 1147; |
| [6] | (e) Arockiam, P. B.; Bruneau, C.; Dixneuf, P. H . Chem. Rev. 2012, 112, 5879; |
| [6] | (f) Ackermann, L. C . Acc. Chem. Res. 2014, 47, 281; |
| [6] | (g) Pei, P.; Zhang, F.; Yi, H.; Lei, A . Acta Chim. Sinica 2017, 75, 15 (in Chinese). |
| [6] | ( 裴朋昆, 张凡, 易红, 雷爱文, 化学学报, 2017, 75, 15); |
| [6] | (h) Du, J.-Y.; Xia, C.-G.; Sun, W . Acta Chim. Sinica 2018, 76, 329 (in Chinese). |
| [6] | ( 杜俊毅, 夏春谷, 孙伟, 化学学报, 2018, 76, 329). |
| [7] | For selected examples of palladium-catalyzed direct halogenation of C—H bonds, see: (a) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300 |
| [7] | (b) Wan, X. B.; Ma, Z. X.; Li, B. J.; Zhang, K. Y.; Cao, S. K.; Zhang, S. W.; Shi, Z. J. J. Am. Chem. Soc. 2006, 128, 7416; |
| [7] | (c) Zhao, X.; Dimitrijevic, E.; Dong, V. M . J. Am. Chem. Soc. 2009, 131, 3466; |
| [7] | (d) Wang, X.-C.; Hu, Y.; Bonacorsi, S.; Hong, Y.; Burrell, R.; Yu, J.-Q . J. Am. Chem. Soc. 2013, 135, 10326; |
| [7] | (e) Gao, D.; Gu, Q.; You, S.-L . ACS Catal. 2014, 4, 2741; |
| [7] | (f) Chu, L.; Xiao, K.-J.; Yu, J.-Q . Science 2014, 346, 451; |
| [7] | (g) Zhao, K.; Yang, L.; Liu, J.-H.; Xia, C.-G . Chin. J. Org. Chem. 2018, 38, 2833 (in Chinese). |
| [7] | ( 赵康, 杨磊, 刘建华, 夏春谷, 有机化学, 2018, 38, 2833). |
| [8] | (a) Chen, X.; Hao, X.-S.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. 2006, 128, 6790 |
| [8] | (b) Wang, W.; Pan, C.; Chen, F.; Cheng, J . Chem. Commun. 2011, 47, 3978; |
| [8] | (c) Mo, S.; Zhu, Y.; Shen, Z . Org. Biomol. Chem. 2013, 11, 2756; |
| [8] | (d) Du, Z.-J.; Gao, L.-X.; Lin, Y.-J.; Han, F.-S . ChemCatChem 2014, 6, 123; |
| [8] | (e) Hufman, L. M.; Stahl, S. S . J. Am. Chem. Soc. 2008, 130, 9196; |
| [8] | (f) King, A. E.; Huffman, L. M.; Casitas, A.; Costas, M.; Ribas, X.; Stahl, S. S . J. Am. Chem. Soc. 2010, 132, 12068; |
| [8] | (g) Wang, Z.-L.; Zhao, L.; Wang, M.-X . Org. Lett. 2011, 13, 6560; |
| [8] | (h) Wang, Z.-L.; Zhao, L.; Wang, M.-X . Org. Lett. 2012, 14, 1472; |
| [8] | (i) Casitas, A.; Ribas, X . Chem. Sci. 2013, 4, 2301; |
| [8] | (j) Zhang, H.; Yao, B.; Zhao, L.; Wang, D.-X.; Xu, B.-Q.; Wang, M.-X . J. Am. Chem. Soc. 2014, 136, 6326; |
| [8] | (k) Truong, T.; Klimovica, K.; Daugulis, O . J. Am. Chem. Soc. 2013, 135, 9342; |
| [8] | (l) Suess, A. M.; Ertem, M. Z. C.; Cramer, J.; Stahl, S. S . J. Am. Chem. Soc. 2013, 135, 9797; |
| [8] | (m) Zhang, Q.; Yin, X.-S.; Zhao, S.; Fang, S.-L.; Shi, B.-F . Chem. Commun. 2014, 50, 8353. |
| [9] | For selected examples of rhodium-catalyzed direct halogenation of C—H bonds, see: (a) Schroder, N.; Wencel-Delord, J.; Glorius, F. J. Am. Chem. Soc. 2012, 134, 8298 |
| [9] | (b) Hwang, H.; Kim, J.; Jeong, J.; Chang, S. J. Am. Chem. Soc. 2014, 136, 10770; |
| [9] | (c) Qian, G.; Hong, X.; Liu, B.; Mao, H.; Xu, B. Org. Lett. 2014, 16, 5294. |
| [10] | For an example of ruthenilum-catalyzed ortho-halogenation, see: Wang, L.-H.; Ackermann, L . Chem. Commun. 2014, 50, 1083. |
| [11] | For an example of Co-catalyzed ortho-halogenation, see: (a) Yu, D.-G.; Gensch, T.; de Azambuja, F.; Vásquez-Céspedes, S.; Glorius, F. J. Am. Chem. Soc. 2014, 136, 17722 |
| [11] | (b) Gu, Z.-Y., Ji, S.-J . Acta Chim. Sinica 2018, 76, 347 (in Chinese). |
| [11] | ( 顾正洋, 纪顺俊, 化学学报, 2018, 76, 347). |
| [12] | For recent reviews on organic electrochemistry, see: (a) Yuan, Y.; Cao, Y.; Qiao, J.; Lin, Y.; Jiang, X.; Weng, Y.; Tang, S.; Lei, A. Chin. J. Chem. 2019, 37, 49 |
| [12] | (b) Tang, S.; Liu, Y.; Lei, A . Chem 2018, 4, 27; |
| [12] | (c) Liu, K.; Song, C.; Lei, A . Org. Biomol. Chem. 2018, 16, 2375; |
| [12] | (d) Sauer, G. S.; Lin, S . ACS Catal. 2018, 8, 5175; |
| [12] | (e) Parry, J.; Fu, N.; Lin, S . Synlett 2018, 29, 257; |
| [12] | (f) Nutting, J. E.; Rafiee, M.; Stahl, S. S . Chem. Rev. 2018, 118, 4834; |
| [12] | (g) Jiang, Y.; Xu, K.; Zeng, C . Chem. Rev. 2018, 118, 4485; |
| [12] | (h) Waldvogel, S. R.; Lips, S.; Selt, M.; Riehl, B.; Kampf, C . Chem. Rev. 2018, 118, 6706; |
| [12] | (i) Moeller, K. D . Chem. Rev. 2018, 118, 4817; |
| [12] | (j) Yang, Q.-L.; Fang, P.; Mei, T.-S . Chin. J. Chem. 2018, 36, 338; |
| [12] | (k) Yan, M.; Kawamata, Y.; Baran, P. S . Chem. Rev. 2017, 117, 13230; |
| [12] | (l) Horn, E. J.; Rosen, B. R.; Baran, P. S . ACS Cent. Sci. 2016, 2, 302; |
| [12] | (m) Hou, Z.-W.; Mao, Z.-Y.; Xu, H.-C . Synlett 2017, 28, 1867; |
| [12] | (n) Francke, R.; Little, R. D . Chem. Soc. Rev. 2014, 43, 2492. |
| [13] | For recent examples on organic electrochemistry, see: (a) Yuan, Y.; Yao, A.; Zheng, Y.; Gao, M.; Zhou, Z.; Qiao, J.; Hu, J.; Ye, B.; Zhao, J.; Wen, H.; Lei, A . iScience 2019, 12, 293 |
| [13] | (b) Wang, P.; Tang, S.; Huang, P. F.; Lei, A. W.; Angew. Chem., Int. Ed. 2017, 56, 3009; |
| [13] | (c) Zhang, Z.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.; Liu, G.; Yang, Y.; Mo, F . Org. Lett. 2019, 21, 762; |
| [13] | (d) Yan, H.; Hou, Z.-W.; Xu, H.-C . Angew. Chem., Int. Ed. 2019, 58, 4592; |
| [13] | (e) Hou, Z.-W.; Mao, Z.-Y.; Zhao, H.-B.; Melcamu, Y. Y.; Lu, X.; Song, J.; Xu, H.-C . Angew. Chem., Int. Ed. 2016, 55, 9168; |
| [13] | (f) Rafiee, M.; Wang, F.; Hruszkewycz, D. P.; Stahl, S. S . J. Am. Chem. Soc. 2018, 140, 22; |
| [13] | (g) Wang, H.; Zhang, J.; Tan, J.; Xin, L.; Li, Y.; Zhang, S.; Xu, K . Org. Lett. 2018, 20, 2505; |
| [13] | (h) . , , Lin, D. Z.; Huang, J. M.; Org. Lett. 2018, 20, 2112; |
| [13] | (i) Ye, Z.; Ding, M.; Wu, Y.; Li, Y.; Hua, W.; Zhang, F . Green Chem. 2018, 20, 1732; |
| [13] | (j) Wang, Q.-Q.; Xu, K.; Jiang, Y.-Y.; Liu, Y.-G.; Sun, B.- G.; Zeng, C.-C . Org. Lett. 2017, 19, 5517; |
| [13] | (k) Wiebe, A.; Lips, S.; Schollmeyer, D.; Franke, R.; Waldvogel, S. R . Angew. Chem., Int. Ed. 2017, 56, 14727; |
| [13] | (l) Kawamata, Y.; Yan, M.; Liu, Z.; Bao, D.-H.; Chen, J.; Starr, J.; Baran, P. S . J. Am. Chem. Soc. 2017, 139, 7448; |
| [13] | (m) Horn, E. J.; Rosen, B. R.; Chen, Y.; Tang, J.; Chen, K.; Eastgate, M. D.; Baran, P. S . Nature 2016, 533, 77. |
| [14] | For selected reviews on transition-metal-catalyzed electrochemical C—H functionalization, see: (a) Sauermann, N.; Meyer, T. H.; Qiu, Y.; Ackermann, L . ACS Catal. 2018, 8, 7086 |
| [14] | (b) Sauermann, N.; Meyer, T. H.; Ackermann, L . Chem.-Eur. J. 2018, 24, 16209; |
| [14] | (c) Ma, C.; Fang, P.; Mei, T.-S . ACS Catal. 2018, 8, 7179; |
| [14] | (d) Jiao, K.-J.; Zhao, C.-Q.; Fang, P.; Mei, T.-S . Tetrahedron Lett. 2017, 58, 797; |
| [14] | (e) Wu, Y.-X.; Xi, Y.-C.; Zhao, M.; Wang, S.-Y . Chin. J. Org. Chem. 2018, 38, 2590 (in Chinese). |
| [14] | ( 吴亚星, 席亚超, 赵明, 王思懿, 有机化学, 2018, 38, 2590). |
| [15] | For selected examples on transition-metal-catalyzed electrochemical C—H functionalization, see:(a) Qiu, Y.; Stangier, M.; Meyer, T. H.; Oliveira, J. C. A.; Ackermann, L. Angew. Chem. Int. Ed. 2018, 57, 14179 |
| [15] | (b) Sauermann, N.; Mei, R.; Ackermann, L. Angew. Chem. Int. Ed. 2018, 57, 5090; |
| [15] | (c) Gao, X.; Wang, P.; Zeng, L.; Tang, S.; Lei, A . J. Am. Chem. Soc. 2018, 140, 4195; |
| [15] | (d) Tang, S.; Wang, D.; Liu, Y.; Liu, L.; Lei, A . Nature Commun. 2018, 9, 798; |
| [15] | (e) Xu, F.; Li, Y.-J.; Huang, C.; Xu, H.-C . ACS Catal. 2018, 8, 3820; |
| [15] | (f) Shrestha, A.; Lee, M.; Dunn, A. L.; Sanford, M. S . Org. Lett. 2018, 20, 204; |
| [15] | (g) Grayaznova, T. V.; Dudkina, Y. B.; Islamov, D. R.; Kataeva, O. N.; Sinyashin, O. G.; Vicic, D. A.; Budnikova, Y. Н . J. Organomet. Chem. 2015, 785, 68; |
| [15] | (h) Amatore, C.; Cammoun, C.; Jutand, A . Adv. Synth. Catal. 2007, 349, 292; |
| [15] | (i) Freund, M. S.; Labinger, J. A.; Lewis, N. S.; Bercaw, J. E . J. Mol. Catal. 1994, 87, L11. |
| [16] | Kakiuchi, F.; Kochi, T.; Mutsutani, H.; Kobayashi, N.; Urano, S.; Sato, M.; Nishiyama, S.; Tanabe, T. J. Am. Chem. Soc. 2009, 131, 11310. |
| [17] | (a) Yang, Q.-L.; Wang, X.-Y.; Wang, T.-L.; Yang, X.; Liu, D.; Tong, X.; Wu, X.-Y.; Mei, T.-S . Org. Lett. 2019, 21, 2645 |
| [17] | (b) Yang, Q.-L.; Li, C.-Z.; Zhang, L.-W.; Li, Y.-Y.; Tong, X.; Wu, X.-Y.; Mei, T.-S . Organometallics 2019, 38, 1208; |
| [17] | (c) Yang, Q.-L.; Wang, X.-Y.; Lu, J.-Y.; Zhang, L.-P.; Fang, P.; Mei, T.-S . J. Am. Chem. Soc. 2018, 140, 11487; |
| [17] | (d) Li, Y.-Q.; Yang, Q.-L.; Fang, P.; Mei, T.-S.; Zhang, D . Org. Lett. 2017, 19, 2905; |
| [17] | (e) Ma, C.; Zhao, C.-Q.; Li, Y.-Q.; Zhang, L.-P.; Xu, X.; Zhang, K.; Mei, T.-S . Chem. Commun. 2017, 53, 12189; |
| [17] | (f) Yang, Q.-L.; Li, Y.-Q.; Ma, C.; Fang, P.; Zhang, X.-J.; Mei, T.-S . J. Am. Chem. Soc. 2017, 139, 3293. |
| [18] | During this manuscript preparation, Kakiuchi reported similar work using benzamide derivatives: Konishi, M.; Tsuchida, K.; Sano, K.; Kochi, T.; Kakiuchi, F. J. Org. Chem. 2017, 82, 8716. However, the work was independently carried out. The reaction conditions and directing groups used in these two studies are different. |
| [19] | (a) Sun, H.; Yu, L.; Jin, X.; Hu, X.; Wang, D.; Chen, G. Z . Electrochem. Commun. 2005, 7, 685 |
| [19] | (b) Yu, L.; Jin, X.; Chen, G. Z. J. Electroanal. Chem. 2013, 688, 371. |
/
| 〈 |
|
〉 |