研究论文

Li10GeP2S12固态电解质电极界面特性研究

  • 张桐 ,
  • 杨梓 ,
  • 李红亮 ,
  • 庄全超 ,
  • 崔艳华
展开
  • a 中国矿业大学 材料科学与工程学院 徐州 221116;
    b 中国工程物理研究院 电子工程研究所 绵阳 621900

收稿日期: 2019-01-05

  网络出版日期: 2019-05-10

基金资助

项目受国家自然科学基金(No.U1730136)资助.

Electrochemical Impedance Spectroscopic Studies of All Solid State battery with Li10GeP2S12 as Electrolyte

  • Zhang Tong ,
  • Yang Zi ,
  • Li Hongliang ,
  • Zhuang Quanchao ,
  • Cui Yanhua
Expand
  • a School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116;
    b Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621900

Received date: 2019-01-05

  Online published: 2019-05-10

Supported by

Project supported by the National Natural Science Foundation of China (No. U1730136).

摘要

采用高温固相法合成了固态电解质Li10GeP2S12,其室温离子电导率为2.02×10-3 S/cm,并组装了LiNbO3@LiNi1/3Co1/3Mn1/3O2/Li10GeP2S12/Li全固态电池.恒流充放电测试表明全固态电池首次放电容量121.2 mAh/g,库伦效率40周后稳定在99.8%左右,循环100周后容量保持率达93.7%.电化学阻抗谱的测试结果表明,其典型的阻抗谱图由高频区半圆(HFS)、中频区半圆(MFS)和低频区斜线(LFL)组成,其中,HFS归属于电解质阻抗(Rel//Qel),MFS归属于电荷传递过程(Rct//Qdl),LFL归属于锂离子的固态扩散过程.通过选取适当的等效电路,对实验所得的电化学阻抗谱数据进行拟合,并分析了RelRct随电极电位的变化规律.

本文引用格式

张桐 , 杨梓 , 李红亮 , 庄全超 , 崔艳华 . Li10GeP2S12固态电解质电极界面特性研究[J]. 化学学报, 2019 , 77(6) : 525 -532 . DOI: 10.6023/A19010013

Abstract

All-solid-state batteries will be the main direction of lithium-ion batteries in the future. Current research mainly focuses on improving the conductivity of solid-state electrolytes, but there are few studies on the electronic and ionic transport in all solid state batteries. In this paper, we synthesized Li10GeP2S12 through high temperature solid phase method. The ionic conductivity of Li10GeP2S12 at room temperature is 2.02×10-3 S/cm and it's activation energy calculated from Arrhenius plots is 29.8 kJ/mol. The all solid-state battery of LiNbO3@LiNi1/3Co1/3Mn1/3O2/Li10GeP2S12/Li was successfully fabricated and characterized by galvanostatic charge/discharge (DC), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The first discharge capacity of the all-solid-state battery is 121.2 mAh/g, the coulombic efficiency stabilize at 99.8% after 40 weeks and the capacity retention rate is 93.7% after 100 weeks. After analyzing the electrochemical impedance spectroscopy, the typical impedance spectra of the battery is composed of high frequency semicircle (HFS), middle frequency semicircle (MFS) and low frequency line (LFL). And HFS belongs to the impedance of electrolyte (Rel), MFS belongs to charge transfer impedance (Rct) and LFL belongs to diffusion process of lithium ion in active material. The continuous increase of Rel between 3.8 V and 4.3 V is due to the decomposition of LGPS to GeS2, S and P2S5 at high potential, which results in the decrease of grain conductivity. On the other hand, the voltage range of 3.8~4.3 V is near the charging and discharging plateau at which concentration polarization is large. The stress in the crystal may lead to the breakup of some grains which resulting in the generation of more grain boundaries and the increase of grain boundary impedance. According to the fitting results of Rct, we find that Rct decreases with the increase of potential until 4.3 V at which Rct reaches the minimum value in the first process of charging and it is a reversible process while discharging.

参考文献

[1] Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.
[2] Jin, Z. Q.; Xie, K.; Hong, X. B. Acta Chim. Sinica 2014, 72, 11(in Chinese). (金朝庆, 谢凯, 洪晓斌, 化学学报, 2014, 72, 11.)
[3] Liu, J.; Xu, J. Y.; Lin, Y.; Li, J.; Lai, Y. Q.; Yuan, C. F.; Zhang, J.; Zhu, K. Acta Chim. Sinica 2013, 71, 869(in Chinese). (刘晋, 徐俊毅, 林月, 李劼, 赖延清, 袁长福, 张锦, 朱凯, 化学学报, 2013, 71, 869.)
[4] Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P. Chem. Rev. 2016, 47, 140.
[5] Lin, D.; Liu, Y.; Cui, Y. Nat. Nanotechnol. 2017, 12, 194.
[6] Qiu, Z.; Zhang, Y.; Xia, S.; Dong, P. Acta Chim. Sinica 2015, 73, 992(in Chinese). (邱振平, 张英杰, 夏书标, 董鹏, 化学学报, 2015, 73, 992.)
[7] Liu, W. Y.; Fu, Z. W.; Qin, Q. Z. Acta Chim. Sinica 2004, 62, 2223(in Chinese). (刘文元, 傅正文, 秦启宗, 化学学报, 2004, 62, 2223.)
[8] Deng, Z.; Mo, Y.; Ong, S. P. NPG Asia Mater. 2016, 8, e254.
[9] Manthiram, A.; Yu, X.; Wang, S. Nat. Rev. Mater. 2017, 2, 16103.
[10] Ramakumar, S.; Deviannapoorani, C.; Dhivya, L.; Shankar, L. S.; Murugan, R. Prog. Mater. Sci. 2017, 88, 325.
[11] Xu, H. H.; Wang, S. F.; Wilson, H.; Zhao, F.; Manthiram, A. Chem. Mater. 2017, 29, 7206.
[12] Zhang, B.; Rui, T.; Yang, L.; Zheng, J.; Zhang, K.; Mo, S.; Zhan, L.; Feng, P. Energy Storage Mater. 2018, 10, 139.
[13] He, X.; Zhu, Y.; Mo, Y. Nat. Commun. 2017, 8, 15893.
[14] Fergus, J. W. J. Power Sources 2010, 195, 4554.
[15] Minami, T.; Hayashi, A.; Tatsumisago, M. Solid State Ion. 2006, 177, 2715.
[16] Luo, W.; Gong, Y.; Zhu, Y.; Li, Y.; Yao, Y.; Zhang, Y.; Fu, K. K.; Pastel, G.; Lin, C. F.; Mo, Y. Adv. Mater. 2017, 29, 1606042.
[17] Zhu, Y.; He, X.; Mo, Y. J. Mater. Chem. A 2016, 4, 3253.
[18] Wang, Q.; Wen, Z.; Jin, J.; Guo, J.; Huang, X.; Yang, J.; Chen, C. Chem. Commun (Camb). 2016, 52, 1637.
[19] Li, Y.; Zhou, W.; Chen, X.; Lü, X.; Cui, Z.; Xin, S.; Xue, L.; Jia, Q.; Goodenough, J. B. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 13313.
[20] Kato, A.; Hayashi, A.; Tatsumisago, M. J. Power Sources 2016, 309, 27.
[21] Zhu, Y.; He, X.; Mo, Y. ACS Appl. Mater. Interfaces 2015, 7, 23685.
[22] Sharafi, A.; Kazyak, E.; Davis, A. L.; Yu, S.; Thompson, T.; Siegel, D. J.; Dasgupta, N. P.; Sakamoto, J. Chem. Mater. 2017, 29, 7961.
[23] Takada, K. Langmuir 2013, 29, 7538.
[24] Yokokawa, H. Solid State Ion. 2016, 285, 126.
[25] Long, P.; Xu, Q.; Peng, G.; Yao, X.; Xu, X. ChemElectroChem 2016, 3, 764.
[26] Wan, H.; Gang, P.; Yao, X.; Jing, Y.; Ping, C.; Xu, X. Energy Storage Mater. 2016, 4, 59.
[27] Nagao, M.; Kitaura, H.; Hayashi, A.; Tatsumisago, M. J. Power Sources 2009, 189, 672.
[28] Gao, J.; Zhao, Y. S.; Shi, S. Q.; Li, H. Chinese Phys. B 2016, 25, 35.
[29] Haruyama, J.; Sodeyama, K.; Tateyama, Y. ACS Appl. Mater. Interfaces 2017, 9, 286.
[30] Tatsumisago, M.; Nagao, M.; Hayashi, A. J. Asian Ceram. Soc. 2013, 1, 17.
[31] Noriaki, K.; Kenji, H.; Yuichiro, Y.; Masaaki, H.; Ryoji, K.; Masao, Y.; Takashi, K.; Yuki, K.; Shigenori, H.; Koji, K. Nat. Mater. 2011, 10, 682.
[32] Amani, J. A.; Koppe, T.; Hofsäss, H.; Vetter, U. Phys. Rev. Appl. 2015, 4, 044007.
[33] Zhuang, Q. C.; Xu, S. D.; Qiu, X. Y.; Cui, Y. L.; Fang, L.; Sun, S. G. Prog. Chem. 2010, 22, 1044(in Chinese). (庄全超, 徐守冬, 邱祥云, 崔永丽, 方亮, 孙世刚, 化学进展, 2010, 22, 1044.)
[34] Siroma, Z.; Sato, T.; Takeuchi, T.; Nagai, R.; Ota, A.; Ioroi, T. J. Power Sources 2016, 316, 215.
[35] Boulineau, S.; Courty, M.; Tarascon, J. M.; Viallet, V. Solid State Ion. 2012, 221, 1.
[36] Han, F.; Gao, T.; Zhu, Y.; Gaskell, K. J.; Wang, C. Adv. Mater. 2015, 27, 3473.
[37] Qiu, X. Y.; Zhuan, Q. C.; Zhang, Q. Q.; Cao, R.; Qiang, Y. H.; Ying, P. Z.; Sun, S. G. J. Electroanal. Chem. 2013, 688, 392.
[38] Liu, W.; Sun, D.; Feng, T.; Xia, J.; Wang, Q.; Jiang, D. J. Ceram. 2013, 34, 555(in Chinese). (刘薇, 孙大志, 冯涛, 夏金峰, 王琪, 蒋丹宇, 陶瓷学报, 2013, 34, 555.)
[39] Verkerk, M.; Middelhuis, B.; Burggraaf, A. Solid State Ion. 1982, 6, 159.
[40] Näfe, H. Solid State Ion. 1984, 13, 255.
[41] Mo, Y.; Ong, S. P.; Ceder, G. Chem. Mater. 2012, 24, 15.
[42] Levi, M. D.; Gamolsky, K.; Aurbach, D.; Heider, U.; Oesten, R. Electrochim. Acta 2000, 45, 1781.
[43] Ohta, N.; Takada, K.; Sakaguchi, I.; Zhang, L. Q.; Ma, R. Z.; Fukuda, K.; Osada, M.; Sasaki, T. Electrochem. Commun. 2007, 9, 1486.

文章导航

/