基于纳米间隔电极对的DNA分子结电输运的研究进展
收稿日期: 2019-04-11
网络出版日期: 2019-05-21
基金资助
项目受中南大学湘雅三医院“新湘雅人才工程”(20150203);国家重点研发计划(2017YFA0204902);国家自然科学基金(21722305)
Advances in Charge Transport through DNA Molecular Junction by Employing Electrodes Pair with Nanometer-sized Separation
Received date: 2019-04-11
Online published: 2019-05-21
Supported by
Project supported by the New Xiangya Talent Project of the Third Xiangya Hospital of Central South University(20150203);the National Key R&D Program of China(2017YFA0204902);the National Natural Science Foundation of China(21722305)
脱氧核糖核酸分子是一类重要的生物分子, 在生物医学领域之外, 该类分子还因为其所具有的独特的双螺旋结构以及长程输运能力, 在分子电子学领域也引起了研究者的极大兴趣. 本文综述了近年来基于纳米间隔电极对构筑分子结这一研究范式, 在构筑脱氧核糖核酸分子结以及研究后者的电输运性质等方面的研究进展. 依据研究者所采用的不同纳米间隔电极对构筑技术, 主要围绕裂结法和切割法两大类研究方法所展开. 前者主要包括扫描隧道显微镜裂结法、导电原子力显微镜法、机械可控裂结法, 后者则主要包括碳纳米管切割法、石墨烯切割法、硅纳米线切割法. 在梳理不同实验方法的发展脉络、比较不同实验方法的各自特点的基础上, 对一些具有代表性的关于脱氧核糖核酸分子结的研究工作进行了重点介绍, 探讨了脱氧核糖核酸分子结所具有的与常规小分子体系所不同的特殊电学性质, 同时对该领域的未来发展进行了展望.
杨威宇 , 雷志超 , 洪文晶 , 黄飞舟 . 基于纳米间隔电极对的DNA分子结电输运的研究进展[J]. 化学学报, 2019 , 77(10) : 951 -963 . DOI: 10.6023/A19040127
Molecular electronics is an interdisciplinary science that mainly studies the charge transport through molecules and its main goal is to fabricate molecular devices with electrical functionalities. In the state-of-art of molecular electronics, the research paradigm is to fabricate electrodes pair with nanometer-sized separation and construct the molecular junction through the assembly of target molecules with the electrodes pair. With this framework, the target molecule can be integrated to the macroscopic measurement circuit. DNA is one of the most significant biomolecules in natural sciences. It had drawn great attentions in biomedicine because of the carried genetic instructions. In molecular electronics, DNA also had attracted much interest due to the distinct structure and its capability of long-range charge transport. Nevertheless, in the early stage of molecular electronics, the probe molecules were limited to those with simple structures and short lengths. In recent years, molecular electronics had witnessed a rapid progress due to the developments in micro/nano-fabrication and the detection for weak current signal. Specifically, it includes the improvements in the success rate, efficiency, and stability of the fabricated molecular device. Benefiting from that, the probe molecules had been extended to a number of complex compounds like DNA. We give a brief introduction to the recent progress in the fabrication of DNA molecular junctions and the studies on the corresponding charge transport, most of which were made by using the research paradigm of fabricating electrodes pair with nanometer-sized separation. According to the fabrication methods that employed, these advances were introduced in two classes. One is that made by the as-called break junction methods, which include STM-break junction, conductive AFM and mechanically controllable break junction. The other is that made by the as-called cutting methods, which include cutting of carbon nanotube, graphene and silicon nanowire. We summarize the historical development of these methods and give a comparison between them. We also introduce some representative research on the charge transport through DNA molecular junction, and discuss the distinct features of DNA in electrical properties compared to the conventional small molecules. To conclude, we give a prospect on the future development of the studies on charge transport through DNA molecular junction.
Key words: molecular electronics; molecular junction; DNA; charge transport
[1] | Franklin, R. E.; Gosling, R. G . Nature 1953, 171, 740. |
[2] | Watson, J. D.; Crick, F. H. C . Nature 1953, 171, 737. |
[3] | Wilkins, M. H. F; Stokes, A. R.; Wilson, H. R . Nature 1953, 171, 738. |
[4] | Feynman, R. P . In Engineering and Science, Vol. 23, The Caltech Alumni Magazine, 1960. |
[5] | Asanuma, H.; Liang, X.; Nishioka, H.; Matsunaga, D.; Liu, M.; Komiyama, M . Nat. Protoc. 2007, 2, 203. |
[6] | Zhou, C.; Yang, Z.; Liu, D . J. Am. Chem. Soc.2012, 134, 1416. |
[7] | Robinson, B. H.; Seeman, N. C . Protein Eng. Des. Sel. 1987, 1, 295. |
[8] | Adleman, L . Science1994, 266, 1021. |
[9] | Alivisatos, A. P.; Johnsson, K. P.; Peng, X.; Wilson, T. E.; Loweth, C. J.; Bruchez, Jr., M. P.; Schultz, P. G . Nature1996, 382, 609. |
[10] | Meggers, E.; Kusch, D.; Spichty, M.; Wille, U.; Giese, B . Angew. Chem. Int. Ed.1998, 37, 460. |
[11] | Sun, Y.; Cheng, P.; Yan, S.; Liao, D . Chin. Sci. Bull. 2000, 45, 2357 (in Chinese). |
[11] | ( 孙英姬, 程鹏, 阎世平, 廖代正, 科学通报, 2000, 45, 2357. ) |
[12] | Cees, D.; Mark, R . Phys. World 2001, 14, 29. |
[13] | Xu, X.; Han, B.; Yu, X.; Zhu, Y . Acta Chim. Sinica DOI: 10.6023/A19010019 (in chinese). |
[13] | ( 许晓娜, 韩宾, 于曦, 朱艳英 . 化学学报, doi: 10.6023/A19010019 .) |
[14] | Yang, Y.; Liu, J. Y.; Yan, R. W.; Wu, D. Y.; Tian, Z. Q . Chem. J. Chin. Univ.-Chin. 2015, 36, 9 (in Chinese). |
[14] | ( 杨扬, 刘俊扬, 晏润文, 吴德印, 田中群 , 高等学校化学学报, 2015, 36, 9.) |
[15] | Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116, 4318. |
[16] | Li, T.; Hu, W.; Zhu, D . Adv. Mater. 2010, 22, 286. |
[17] | Kushmerick, J. G.; Holt, D. B.; Pollack, S. K.; Ratner, M. A.; Yang, J. C.; Schull, T. L.; Naciri, J.; Moore, M. H.; Shashidhar, R . J. Am. Chem. Soc. 2002, 124, 10654. |
[18] | Kushmerick, J. G.; Holt, D. B.; Yang, J. C.; Naciri, J.; Moore, M. H.; Shashidhar, R . Phys. Rev. Lett. 2002, 89, 086802. |
[19] | Nijhuis, C. A.; Reus, W. F.; Whitesides, G. M . J. Am. Chem. Soc. 2010, 132, 18386. |
[20] | Zhang, W.; Liu, H.; Lu, J.; Ni, L.; Liu, H.; Li, Q.; Qiu, M.; Xu, B.; Lee, T.; Zhao, Z.; Wang, X.; Wang, M.; Wang, T.; Offenh?usser, A.; Mayer, D.; Hwang, W.-T.; Xiang, D. Light-Sci. Appl. 2019, 8, 34. |
[21] | Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Science 1997, 278, 252. |
[22] | Xu, B. Q.; Tao, N. J. J . Science 2003, 301, 1221. |
[23] | Haiss, W.; Wang, C. S.; Grace, I.; Batsanov, A. S.; Schiffrin, D. J.; Higgins, S. J.; Bryce, M. R.; Lambert, C. J.; Nichols, R. J . Nat. Mater. 2006, 5, 995. |
[24] | Yu, P.; Feng, A.; Zhao, S.; Wei, J.; Yang, Y.; Shi, J.; Hong, W . Acta Phys.-Chim. Sin. 2019, 35, 829 (in Chinese). |
[24] | ( 余培锴, 冯安妮, 赵世强, 魏珺颖, 杨扬, 师佳, 洪文晶 , 物理化学学报, 2019, 35, 829.) |
[25] | Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L . Appl. Phys. Lett. 1999, 75, 301. |
[26] | Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T . Nature 2009, 462, 1039. |
[27] | Li, C. Z.; Tao, N. J . Appl. Phys. Lett. 1998, 72, 894. |
[28] | Qing, Q.; Chen, F.; Li, P. G.; Tang, W. H.; Wu, Z. Y.; Liu, Z. F . Angew. Chem. Int. Ed. 2005, 44, 7771. |
[29] | Yang, Y.; Liu, J.-Y.; Chen, Z.-B.; Tian, J.-H.; Jin, X.; Liu, B.; Li, X.; Luo, Z.-Z.; Lu, M.; Yang, F.-Z.; Tao, N.; Tian, Z.-Q. Nanotechnology 2011, 22, 275313. |
[30] | Sorgenfrei, S.; Chiu, C.-y.; Gonzalez, Jr., R. L.; Yu, Y.-J.; Kim, P.; Nuckolls, C.; Shepard, K. L . Nat. Nanotechnol. 2011, 6, 126. |
[31] | Goldsmith, B. R.; Coroneus, J. G.; Khalap, V. R.; Kane, A. A.; Weiss, G. A.; Collins, P. G. Science 2007, 315, 77. |
[32] | Duan, H.; Manfrinato, V. R.; Yang, J. K. W.; Winston, D.; Cord, B. M.; Berggren, K. K . J. Vac. Sci. Technol., B: Microelectron. Nano- meter Struct. 2010, 28, C6H11. |
[33] | Nedelcu, M.; Saifullah, M. S. M Hasko, D. G.; Jang, A.; Anderson, D.; Huck, W. T. S.; Jones, G. A. C.; Welland, M.; Kang, D. J.; Steiner, U . Adv. Funct. Mater. 2010, 20, 2317. |
[34] | Qin, L.; Park, S.; Huang, L.; Mirkin, C. A. Science 2005, 309, 113. |
[35] | Chen, X.; Braunschweig, A. B.; Wiester, M. J.; Yeganeh, S.; Ratner, M. A.; Mirkin, C. A . Angew. Chem. Int. Ed. 2009, 48, 5178. |
[36] | Guo, X. F.; Small, J. P.; Klare, J. E.; Wang, Y. L.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L. M.; O'Brien, S.; Yan, J. M.; Breslow, R.; Wind, S. J.; Hone, J.; Kim, P.; Nuckolls, C. Science 2006, 311, 356. |
[37] | Cao, Y.; Dong, S. H.; Liu, S.; He, L.; Gan, L.; Yu, X. M.; Steigerwald, M. L.; Wu, X. S.; Liu, Z. F.; Guo, X. F . Angew. Chem., Int. Ed. 2012, 51, 12228. |
[38] | Huang, B.; Liu, X.; Yuan, Y.; Hong, Z.-W.; Zheng, J.-F.; Pei, L.-Q.; Shao, Y.; Li, J.-F.; Zhou, X.-S.; Chen, J.-Z.; Jin, S.; Mao, B.-W . J. Am. Chem. Soc. 2018, 140, 17685. |
[39] | Wang, L.; Gong, Z.-L.; Li, S.-Y.; Hong, W.; Zhong, Y.-W.; Wang, D.; Wan, L.-J . Angew. Chem., Int. Ed. 2016, 55, 12393. |
[40] | Cui, X. D.; Primak, A.; Zarate, X.; Tomfohr, J.; Sankey, O. F.; Moore, A. L.; Moore, T. A.; Gust, D.; Harris, G.; Lindsay, S. M. Science 2001, 294, 571. |
[41] | Huang, Z. F.; Xu, B. Q.; Chen, Y. C.; Di Ventra, M.; Tao, N. J . Nano Lett. 2006, 6, 1240. |
[42] | Guo, C.; Chen, X.; Ding, S.-Y.; Mayer, D.; Wang, Q.; Zhao, Z.; Ni, L.; Liu, H.; Lee, T.; Xu, B.; Xiang, D. ACS Nano 2018, 12, 11229. |
[43] | Wen, H.-M.; Yang, Y.; Zhou, X.-S.; Liu, J.-Y.; Zhang, D.-B.; Chen, Z.-B.; Wang, J.-Y.; Chen, Z.-N.; Tian, Z.-Q . Chem. Sci. 2013, 4, 2471. |
[44] | Liu, J.; Zhao, X.; Zheng, J.; Huang, X.; Tang, Y.; Wang, F.; Li, R.; Pi, J.; Huang, C.; Wang, L.; Yang, Y.; Shi, J.; Mao, B.-W.; Tian, Z.-Q.; Bryce, M. R.; Hong, W. Chem 2019, 5, 390. |
[45] | Cai, S.; Deng, W.; Huang, F.; Chen, L.; Tang, C.; He, W.; Long, S.; Li, R.; Tan, Z.; Liu, J.; Shi, J.; Liu, Z.; Xiao, Z.; Zhang, D.; Hong, W . Angew. Chem., Int. Ed. 2019, 58, 3829. |
[46] | Zhang, Y.-P.; Chen, L.-C.; Zhang, Z.-Q.; Cao, J.-J.; Tang, C.; Liu, J.; Duan, L.-L.; Huo, Y.; Shao, X.; Hong, W.; Zhang, H.-L . J. Am. Chem. Soc. 2018, 140, 6531. |
[47] | Chen, L.; Wang, Y. H.; He, B.; Nie, H.; Hu, R.; Huang, F.; Qin, A.; Zhou, X. S.; Zhao, Z.; Tang, B. Z . Angew. Chem., Int. Ed. 2015, 54, 4231. |
[48] | Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L . Nature 2006, 442, 904. |
[49] | Liu, L.; Zhang, Q.; Tao, S.; Zhao, C.; Almutib, E.; Al-Galiby, Q.; Bailey, S. W. D.; Grace, I.; Lambert, C. J.; Du, J.; Yang, L. Nanoscale 2016, 8, 14507. |
[50] | Hihath, J.; Xu, B. Q.; Zhang, P. M.; Tao, N. J . PNAS 2005, 102, 16979. |
[51] | Bruot, C.; Palma, J. L.; Xiang, L. M.; Mujica, V.; Ratner, M. A.; Tao, N. J . Nat. Commun. 2015, 6, 8032. |
[52] | Harashima, T.; Kojima, C.; Fujii, S.; Kiguchi, M.; Nishino, T. Chem. Commun. 2017, 53, 10378. |
[53] | Xiang, L. M.; Palma, J. L.; Li, Y. Q.; Mujica, V.; Ratner, M. A.; Tao, N. J . Nat. Commun. 2017, 8, 14471. |
[54] | Reddy, P.; Jang, S.-Y.; Segalman, R. A.; Majumdar, A. Science 2007, 315, 1568. |
[55] | Paulsson, M.; Datta, S . Phys. Rev. B 2003, 67, 241403. |
[56] | Guo, S.; Zhou, G.; Tao, N . Nano Lett. 2013, 13, 4326. |
[57] | Widawsky, J. R.; Chen, W.; Vazquez, H.; Kim, T.; Breslow, R.; Hybertsen, M. S.; Venkataraman, L . Nano Lett. 2013, 13, 2889. |
[58] | Kim, Y.; Jeong, W.; Kim, K.; Lee, W.; Reddy, P . Nat. Nanotechnol. 2014, 9, 881. |
[59] | Garner, M. H.; Li, H.; Chen, Y.; Su, T. A.; Shangguan, Z.; Paley, D. W.; Liu, T.; Ng, F.; Li, H.; Xiao, S.; Nuckolls, C.; Venkataraman, L.; Solomon, G. C . Nature 2018, 558, 415. |
[60] | Miao, R.; Xu, H.; Skripnik, M.; Cui, L.; Wang, K.; Pedersen, K. G. L.; Leijnse, M.; Pauly, F.; W?rnmark, K.; Meyhofer, E.; Reddy, P.; Linke, H . Nano Lett. 2018, 18, 5666. |
[61] | Li, Y. Q.; Xiang, L. M.; Palma, J. L.; Asai, Y.; Tao, N. J . Nat. Commun. 2016, 7, 11294. |
[62] | Cygan, M. T.; Dunbar, T. D.; Arnold, J. J.; Bumm, L. A.; Shedlock, N. F.; Burgin, T. P.; Jones, L.; Allara, D. L.; Tour, J. M.; Weiss, P. S . J. Am. Chem. Soc. 1998, 120, 2721. |
[63] | Nogues, C.; Cohen, S. R.; Daube, S. S.; Naaman, R . Phys. Chem. Chem. Phys. 2004, 6, 4459. |
[64] | Cohen, H.; Nogues, C.; Naaman, R.; Porath, D . PNAS 2005, 102, 11589. |
[65] | Cohen, H.; Nogues, C.; Ullien, D.; Daube, S.; Naaman, R.; Porath, D . Faraday Discuss. 2006, 131, 367. |
[66] | Ullien, D.; Cohen, H.; Porath, D. Nanotechnology 2007, 18, 4. |
[67] | Livshits, G. I.; Stern, A.; Rotem, D.; Borovok, N.; Eidelshtein, G.; Migliore, A.; Penzo, E.; Wind, S. J.; Felice, R. D.; Skourtis, S. S . Nat. Nanotechnol. 2014, 9, 1040. |
[68] | Muller, C. J.; van Ruitenbeek, J. M.; de Jongh, L. J . Physica C 1992, 191, 485. |
[69] | van Ruitenbeek, J. M.; Alvarez, A.; Pi?eyro, I.; Grahmann, C.; Joyez, P.; Devoret, M. H.; Esteve, D.; Urbina, C . Rev. Sci. Instrum. 1996, 67, 108. |
[70] | Muller, C. J.; de Bruyn Ouboter, R J. Appl. Phys. 1995, 77, 5231. |
[71] | Zhou, C.; Muller, C. J.; Deshpande, M. R.; Sleight, J. W.; Reed, M. A . Appl. Phys. Lett. 1995, 67, 1160. |
[72] | Martin, C. A.; Ding, D.; van der Zant, H. S. J.; van Ruitenbeek, J. M . New J. Phys. 2008, 10, 065008. |
[73] | Kang, N.; Erbe, A.; Scheer, E . New J. Phys. 2008, 10, 9. |
[74] | Dulic, D.; Tuukkanen, S.; Chung, C.-L.; Isambert, A.; Lavie, P.; Filoramo, A. Nanotechnology 2009, 20, 115502. |
[75] | Chen, J.; Reed, M. A.; Rawlett, A. M.; Tour, J. M. Science 1999, 286, 1550. |
[76] | Wassel, R. A.; Credo, G. M.; Fuierer, R. R.; Feldheim, D. L.; Gorman, C. B . J. Am. Chem. Soc. 2004, 126, 295. |
[77] | Perrin, M. L.; Frisenda, R.; Koole, M.; Seldenthuis, J. S.; Gil, J. A. C.; Valkenier, H.; Hummelen, J. C.; Renaud, N.; Grozema, F. C.; Thijssen, J. M.; Duli?, D.; van der Zant, H. S. J . Nat. Nanotechnol. 2014, 9, 830. |
[78] | Zhu, S. C.; Peng, S. J.; Wu, K. M.; Yip, C. T.; Yao, K. L.; Lam, C. H . Phys. Chem. Chem. Phys. 2018, 20, 21105. |
[79] | Walzer, K.; Marx, E.; Greenham, N. C.; Less, R. J.; Raithby, P. R.; Stokbro, K . J. Am. Chem. Soc. 2004, 126, 1229. |
[80] | Kang, N.; Erbe, A.; Scheer, E . Appl. Phys. Lett. 2010, 96, 023701. |
[81] | Liu, S. P.; Weisbrod, S. H.; Tang, Z.; Marx, A.; Scheer, E.; Erbe, A . Angew. Chem., Int. Ed. 2010, 49, 3313. |
[82] | Guo, X. F.; Gorodetsky, A. A.; Hone, J.; Barton, J. K.; Nuckolls, C . Nat. Nanotechnol. 2008, 3, 163. |
[83] | Roy, S.; Vedala, H.; Roy, A. D.; Kim, D.-h.; Doud, M.; Mathee, K.; Shin, H.-k.; Shimamoto, N.; Prasad, V.; Choi, W.; . Nano Lett. 2008, 8, 26. |
[84] | Wang, X. L.; Gao, L.; Liang, B.; Li, X.; Guo, X. F . J. Mat. Chem. B 2015, 3, 5150. |
[85] | Wang, J. D.; Shen, F. X.; Wang, Z. X.; He, G.; Qin, J. W.; Cheng, N. Y.; Yao, M. S.; Li, L. D.; Guo, X. F . Angew. Chem., Int. Ed. 2014, 53, 5038. |
[86] | He, G.; Li, J.; Ci, H. N.; Qi, C. M.; Guo, X. F . Angew. Chem., Int. Ed. 2016, 55, 9036. |
/
〈 |
|
〉 |