表面活性剂用于废水处理研究的新进展
收稿日期: 2019-05-17
网络出版日期: 2019-07-10
基金资助
项目受国家自然科学基金(No.21633002)资助.
Development of Surfactant Application in Wastewater Treatment
Received date: 2019-05-17
Online published: 2019-07-10
Supported by
Project supported by the National Natural Science Foundation of China (No. 21633002).
随着工业化和农业现代化的迅速发展,水污染问题逐渐成为人们关注的焦点.大量工业废水的随意排放造成水体污染,导致可利用的淡水资源十分匮乏.因此,如何低成本,安全、高效地处理工业废水,提高水资源的重复利用效率已经成为亟待解决的重要问题.近年来,基于表面活性剂的分离技术在工业和分析领域取得了突破性进展,其绿色环保和低能耗的特点为废水处理提供了理想的选择.介绍了基于表面活性剂的废水处理技术——胶束增强超滤、表面活性剂改性的固相吸附和基于表面活性剂液液相分离的提取技术的原理以及研究进展,旨在为研究人员提供参考,进一步推动污水处理技术的发展.
赵微微 , 王毅琳 . 表面活性剂用于废水处理研究的新进展[J]. 化学学报, 2019 , 77(8) : 717 -728 . DOI: 10.6023/A19050185
Water is the most important and essential component for the existing activities of human beings, animals and plants. It is estimated that the total amount of water on the earth is about 1.3 billion tons, but 97% of that is salty ocean water and not suitable for drinking. With the rapid growth of population, industrialization and agricultural modernization and other geological and environmental changes, the water environment is deteriorating continuously. Water pollution and water shortage are two of the most important environmental problems in the world. Consequently, water pollution has become a critical issue in recent years. Pollutants in wastewater include organic, inorganic, biological compounds. As many of them have serious toxicity and even show carcinogenic, the release of considerable amount of wastewater into environment causes damages to human being and aquatic conditions, and further leads to the shortage of water resources. Therefore, the need for wastewater treatment in a low-cost, safe and efficient way and improving the reuse efficiency of water resources have become a must. In recent years, surfactant-based separation techniques have made a great progress in industrial and analytical areas. It offers many advantages including low-energy consumption and environment protection, and has been proved efficient in the separation of many inorganic and organic pollutants. To enhance the application of surfactant-based separation techniques in wastewater treatment, it is very important to have a better understanding of the mechanisms involved in this process. The mechanism and development of surfactant-based wastewater treatment techniques, including micelle-enhanced ultrafiltration (MEUF), surfactant-modified solid phase adsorption and surfactant-based liquid-liquid phase separation are summarized. The effects of the surfactant characteristics, the chemistry of the pollutants and the solution conditions used in experiments on the extract kinetics and efficiencies are discussed. This review aims to provide reference and inspiration for researchers and promote the development of wastewater treatment technologies.
[1] Ali, I. Chem. Rev. 2012, 112, 5073.
[2] Clement, R. E.; Yang, P. W. Anal. Chem. 1997, 69, 251R.
[3] Vandevivere, P. C.; Bianchi, R.; Verstraete, W. J. Chem. Technol. Biotechnol. 1998, 72, 289.
[4] Leonard, S. S.; Bower, J. J.; Shi, X. Mol. Cell. Biochem. 2004, 255, 3.
[5] Samanta, S. K.; Singly, O. V.; Jain, R. K. Trends Biotechnol. 2002, 20, 243.
[6] Gupta, V. K.; Carrott, P. J. M.; Ribeiro Carrott, M. M. L.; Suhas. Crit. Rew. Env. Sci. Tec. 2009, 39, 783.
[7] Sethi, S.; Wiesner, M. R. J. Environ. Eng. Div. ASCE 1995, 121, 874.
[8] Eliassen, R.; Bennet, G. E. J. Water Pollut. Control Fed. 1967, 39, R82.
[9] Lee, D. W.; Hong, W. H.; Hwang, K. Y. Sep. Sci. Technol. 2000, 35, 1951.
[10] Hempfling, C. Environ. Prog. 1997, 16, 164.
[11] Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341.
[12] Nicolet, L.; Rott, V. Water Sci. Technol. 1999, 40, 191.
[13] LaPara, T. M.; Konopka, A.; Nakatsu, C. H.; Alleman, J. E. J. Environ. Eng. ASCE 2000, 126, 739.
[14] Yang, X.; Cai, H.; Bao, M.; Yu, J.; Lu, J.; Li, Y. Chin. J. Chem. 2017, 35, 1549.
[15] Huang, X.; Wang, W.; Ling, L.; Zhang, W. Acta Chim. Sinica 2017, 75, 529. (黄潇月, 王伟, 凌岚, 张伟贤, 化学学报, 2017, 75, 529.)
[16] Zhou, L. Acta Chim. Sinica 2017, 75, 552. (周立祥, 化学学报, 2017, 75, 552.)
[17] Tang, J.; Tang, L.; Feng, H.; Dong, H.; Zhang, Y.; Liu, S.; Zeng, G. Acta Chim. Sinica 2017, 75, 575. (汤晶, 汤琳, 冯浩朋, 董浩然, 章毅, 刘思诗, 曾光明, 化学学报, 2017, 75, 575.)
[18] Xia, X.; Hua, Y.; Huang, X.; Ling, L.; Zhang, W. Acta Chim. Sinica 2017, 75, 594. (夏雪芬, 滑熠龙, 黄潇月, 凌岚, 张伟贤, 化学学报, 2017, 75, 594.)
[19] Jia, F.; Liu, J.; Zhang, L. Acta Chim. Sinica 2017, 75, 602. (贾法龙, 刘娟, 张礼知, 化学学报, 2017, 75, 602.)
[20] Zhao, G.; Zhu, B. Principles of Surfactant Action, Chinese Light Industry Press, Beijing, 2003. (赵国玺, 朱步瑶, 表面活性剂作用原理, 中国轻工业出版社, 北京, 2003.)
[21] Fan, Y.; Han, Y.; Wang, Y. L. Acta Phys.-Chim. Sin. 2016, 32, 214. (范雅珣, 韩玉淳, 王毅琳, 物理化学学报, 2016, 32, 214.)
[22] Gibbs, B. F.; Kermasha, S.; Alli, I.; Mulligan, C. N. Int. J. Food Sci. Nutr. 1999, 50, 213.
[23] Hinze, W. L.; Pramauro, E. Crit. Rev. Anal. Chem. 1993, 24, 133.
[24] Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc., Faraday Trans. 2 1976, 72, 1525.
[25] Ravi Kumar, M. N. V. React. Funct. Polym. 2000, 46, 1.
[26] Rosen, M. J. Surfactants and Interfacial Properties, John Wiley&Sons, New York, 1978.
[27] Tanford, C. The Hydrophobic Effect:Formation of Micelles and Biological Membranes, Wiley, New York, 1980.
[28] Zana, R. Structure-Performance Relationships in Surfactants, Marcel Dekker, New York, 1997.
[29] Pastrana-Martínez, L. M.; Morales-Torres, S.; Figueiredo, J. L.; Faria, J. L.; Silva, A. M. T. Water Res. 2015, 77, 179.
[30] Syafei, A. D.; Lin, C.-F.; Wu, C.-H. J. Colloid Interf. Sci. 2008, 323, 112.
[31] Secondes, M. F. N.; Naddeo, V.; Belgiorno, V.; Ballesteros-Jr, F. J. Harzard. Mater. 2014, 264, 342.
[32] Ren, Y.; Lia, T.; Zhang, W.; Wang, S.; Shi, M.; Shan, C.; Zhang, W.; Guan, X.; Lv, L.; Hua, M.; Pan, B. J. Harzard. Mater. 2019, 365, 312.
[33] Choi, Y.-K.; Lee, S.-B.; Lee, D.-J.; Ishigami, Y.; Kajiuchi, T. J. Membr. Sci. 1998, 148, 185.
[34] Xu, K.; Zeng, G.-M.; Huang, J.-H.; Wu, J.-Y.; Fang, Y.-Y.; Huang, G.; Li, J.; Xi, B.; Liu, H. Colloids Surf., A 2007, 294, 140.
[35] Gzara, L.; Dhahbi, M. Desalination 2001, 137, 241.
[36] Ahmad, A. L.; Puasa, S. W. Chem. Eng. J. 2007, 132, 257.
[37] Bielska, M.; Szymanowski, J. Water Res. 2006, 40, 1027.
[38] Talens-Alesson, F. I.; Urbaski, R.; Szymanowski, J. Colloids Surf., A 2001, 178, 71.
[39] Xiarchos, I.; Jaworska, A.; Zakrzewska-Trznadel, G. J. Membr. Sci. 2008, 321, 222.
[40] Landaburu-Aguirre, J.; Pongracz, E.; Peramaki, P.; Keiski, R. L. J. Hazard. Mater. 2010, 180, 524.
[41] Landaburu-Aguirre, J.; García, V.; Pongrácz, E.; Keiski, R. L. Desalination 2009, 240, 262.
[42] Son, G.; Lee, S. Korean J. Chem. Eng. 2011, 28, 793.
[43] Rafique, R. F.; Chowdhury, Z. Z.; Moon, J.; Lee, S. Int. J. Innov. Eng. Technol. 2018, 10, 112.
[44] Channarong, B.; Lee, S. H.; Bade, R.; Shipin, O. V. Desalination 2010, 262, 221.
[45] Scamehorn, J. F.; Christian, S. D.; El-Sayed, D. A.; Uchiyama, H.; Younis, S. S. Sep. Sci. Technol. 1994, 29, 809.
[46] Li, X.; He, S.; Feng, C.; Zhu, Y.; Pang, Y.; Hou, J.; Luo, K.; Liao, X. Sustainability 2018, 10, 92.
[47] Kim, H.; Baek, K.; Kim, B.-K.; Shin, H.-J.; Yang, J.-W. Korean J. Chem. Eng. 2008, 25, 253.
[48] Schwarze, M.; Groß, M.; Moritz, M.; Buchner, G.; Kapitzki, L.; Chiappisi, L.; Gradzielski, M. J. Membr. Sci. 2015, 478, 140.
[49] Yang, H. S.; Han, K. H.; Kang, D. W.; Kim, Y. H. Korean J. Chem. Eng. 1996, 13, 448.
[50] Akita, S.; Castillo, L. P.; Nii, S.; Takahashi, K.; Takeuchi, H. J. Membr. Sci. 1999, 162, 111.
[51] Ferella, F.; Prisciandaro, M.; De Michelis, I.; Veglio, F. Desalination 2007, 207, 125.
[52] Huang, J.; Li, H.; Zeng, G.; Shi, L.; Gu, Y.; Shi, Y.; Tang, B.; Li, X. Sep. Purif. Technol. 2018, 207, 199.
[53] Nekoo, A. B.; Khamforoush, M. Iran. Polym. J. 2019, 28, 391.
[54] Bade, R; Lee, S. H.; Jo, S.; Lee, H.-S.; Lee, S.-E. Desalination 2008, 229, 264.
[55] Baek, K.; Yang, J.-W. J. Harzard. Mater. 2004, 108, 119.
[56] Abbasi-Garravand, E.; Mulligan, C. N. Sep. Purif. Technol. 2014, 132, 505.
[57] Bahmani, P.; Maleki, A.; Rezaee, R.; Mahvi, A. H.; Khamforoush, M.; Athar, S. D.; Daraei, H.; Gharibi, F.; McKay, G. J. Environ. Health. Sci. Eng. 2019, 17, 115.
[58] Baek, K.; Kim, B.-K.; Cho, H.-J.; Yang, J.-W. J. Harzard. Mater. 2003, 99, 303.
[59] Zaghbani, N.; Hafiane, A.; Dhahbi, M. Desalination 2008, 222, 348.
[60] Bielska, M.; Prochaska, K. Dyes Pigm. 2007, 74, 410.
[61] Huang, J.-H.; Zhou, C.-F.; Zeng, G.-M.; Li, X.; Niu, J.; Huang, H.-J.; Shi, L.-J.; He, S.-B. J. Membr. Sci. 2010, 365, 138.
[62] Wasan, D. T.; Ginn, M. E.; Shah, D. O. Surfactant Science Series:Surfactants in Chemical/Process, Marcel Dekker, New York, 1998.
[63] Purkait, M. K.; DasGupta, S.; De, S. Sep. Purif. Technol. 2004, 37, 81.
[64] Purkait, M. K.; DasGupta, S.; De, S. J. Colloid Interface Sci. 2004, 270, 496.
[65] Schwarze, M.; Schaefer, L.; Chiappisi, L.; Gradzielski, M. Sep. Purif. Technol. 2018, 199, 20.
[66] Rubio, S.; Pérez-Bendito, D. TrAC, Trends Anal. Chem. 2003, 22, 470.
[67] Yin, C. Y.; Aroua, M. K.; Ashri, W. M.; Daud, W. Sep. Purif. Technol. 2007, 52, 403.
[68] Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. Chem. Eng. J. 2013, 219, 499.
[69] Reeve, P. J.; Fallowfield, H. J. J. Environ. Manage. 2018, 205, 253.
[70] Jiménez-Castañeda, M. E.; Medina, D. I. Water 2017, 9, 235.
[71] Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Appl. Clay Sci. 2016, 123, 239.
[72] Ahn, C. K.; Park, D.; Woo, S. H.; Park, J. M. J. Hazard. Mater. 2009, 164, 1130.
[73] Farooq, W.; Hong, H.-J.; Kim, E. J.; Yang, J.-W. Sep. Sci. Technol. 2012, 47, 1906.
[74] Chen, W.-F.; Zhang, Z.-Y.; Li, Q.; Wang, H.-Y. Chem. Eng. J. 2012, 203, 319.
[75] Hong, H.-J.; Kim, H.; Baek, K.; Yang, J.-W. Desalination 2008, 223, 221.
[76] Monser, L.; Adhoum, N. Sep. Purif. Technol. 2002, 26, 137.
[77] Mohamed, M. M. J. Colloid Interface Sci. 2004, 272, 28.
[78] Choi, H. D.; Shin, M. C.; Kim, D. H.; Jeon, C. S.; Baek, K. Desalination 2008, 223, 290.
[79] Mahmoud, M. E.; Nabil, G. M.; El-Mallah, N. M.; Karar, S. B. Desalin. Water Treat. 2016, 57, 8389.
[80] Nabil, G. M.; El-Mallah, N. M.; Mahmoud, M. E. J. Ind. Eng. Chem. 2014, 20, 994.
[81] Dong, Y.; Wu, D.; Chen, X.; Lin, Y. J. Colloid Interface Sci. 2010, 348, 585.
[82] Ghiaci, M.; Kia, R.; Abbaspur, A.; Seyedeyn-Azad, F. Sep. Purif. Technol. 2004, 40, 285.
[83] Bowman, R. S. Microporous Mesoporous Mater. 2003, 61, 43.
[84] Macedo-Miranda, M. G.; Olguín, M. T. J. Inclusion Phenom. Macrocyclic Chem. 2007, 59, 131.
[85] Chutia, P.; Kato, S.; Kojima, T.; Satokawa, S. J. Hazard. Mater. 2009, 162, 204.
[86] Widiastuti, N.; Wu, H.; Ang, M.; Zhang, D.-K. Desalination 2008, 218, 271.
[87] Naghash, A.; Nezamzadeh-Ejhieh, A. J. Ind. Eng. Chem. 2015, 31, 185.
[88] Wingenfelder, U.; Furrer, G.; Schulin, R. Microporous Mesoporous Mater. 2006, 95, 265.
[89] Haggerty, G. M.; Bowman, R. S. Environ. Sci. Technol. 1994, 28, 452.
[90] Liu, J.; Huang, H.; Huang, R.; Zhang, J. Z.; Hao, S. S.; Shen, Y. Y.; Chen, H. Water Environ. Res. 2016, 88, 490.
[91] Cortés-Martínez, R.; Martínez-Miranda, V.; Solache-Ríos, M.; García-Sosa, I. Sep. Sci. Technol. 2004, 39, 2711.
[92] Torabian, A.; Kazemian, H.; Seifi, L.; Bidhendi, G. N.; Azimi, A. A.; Ghadiri, S. K. Clean:-Soil, Air, Water 2010, 38, 77.
[93] Abatal, M.; Olguin, M. T. Environm. Earth Sci. 2013, 69, 2691.
[94] Elsheikh, A. F.; Ahmad, U. K.; Ramli, Z. Desalin. Water Treat. 2016, 57, 8302.
[95] Benkli, Y. E.; Can, M. F.; Turan, M.; Çelik, M. S. Water Res. 2005, 39, 487.
[96] Tomaševic-Canovic, M.; Dakovic, A.; Rottinghaus, G.; Matijaševic, S.; Duricic, M. Microporous Mesoporous Mater. 2003, 61, 173.
[97] Nikashina, V. A.; Myasoedov, B. F. In Natural Microporous Materials in Environmental Technology, Eds.:Misaelides, P.; Macášek, F.; Pinnavaia, T. J.; Colella, C., Springer Netherlands, Dordrecht, 1999, p. 335.
[98] Xie, Q.; Lin, Y.; Wu, D.; Kong, H. Fuel 2017, 203. 411.
[99] Shirzadi, H.; Nezamzadeh-Ejhieh, A. J. Mol. Liq. 2017, 230, 221.
[100] Trana, H. N.; Vietb, P. V.; Chao, H.-P. Ecotoxicol. Environ. Saf. 2018, 147, 55.
[101] Liu, C. M.; Wu, P. X.; Zhu, Y. J.; Tran, L. T. Chemosphere 2016, 144, 1026.
[102] Jordan, J. W. J. Phys. Chem. 1949, 53, 294.
[103] Smith, J. A.; Galan, A. Environ. Sci. Technol. 1995, 29, 685.
[104] Shen, Y. Chemosphere 2001, 44, 989.
[105] Zhu, L.; Chen, B. Environ. Sci. Technol. 2000, 34, 2997.
[106] Zhu, L.; Chen, B.; Shen, X. Environ. Sci. Technol. 2000, 34, 468.
[107] Zhu, L.; Li, Y.; Zhang, J. Environ. Sci. Technol. 1997, 31, 1407.
[108] Ma, J.; Zhu, L. Chemosphere 2007, 68, 1883.
[109] Wu, Z.; Zhu, L. J. Environ. Sci.-China 2012, 24, 248.
[110] Nourmoradi, H.; Khiadani, M.; Nikaeen, M. J. Chem. 2013, 2013, 1.
[111] Chen, D. M.; Chen, J.; Luan, X. L.; Ji, H. P.; Xia, Z. G. Chem. Eng. J. 2011, 171, 1150.
[112] Chen, D. M.; Chen, J.; Wang, X. M.; Luan, X. L.; Ji, H. P.; Xu, F. Adv. Mater. Res. 2011, 178, 29.
[113] Wang, L.; Wang, A. J. Hazard. Mater. 2008, 160, 173.
[114] Acisli, O.; Khataee, A.; Karaca, S.; Sheydaei, M. Ultrason. Sonochem. 2016, 31, 116.
[115] Lin, S.-H.; Juang, R.-S. J. Hazard. Mater. 2002, 92, 315.
[116] Malakul, P.; Srinivasan, K. R.; Wang, H. Y. Ind. Eng. Chem. Res. 1998, 37, 4296.
[117] Li, S.-Z.; Wu, P.-X. J. Hazard. Mater. 2010, 173, 62.
[118] Özcan, A. S.; Gök, Ö.; Özcan, A. J. Hazard. Mater. 2009, 161, 499.
[119] Zhu, R.; Zhu, L.; Zhu, J. Environ. Sci. 2006, 27, 91. (朱润良, 朱利中, 朱建喜, 环境科学, 2006, 27, 91.)
[120] Ma, J.; Zhu, L. J. Harzard. Mater. 2006, 136, 982.
[121] Bungenberg de Jong, H. G. Colloid Science, Elsevier, Amsterdam, 1949.
[122] Bohidar, H. B. J. Surface Sci. Technol. 2008, 24, 105.
[123] Veis, A. Adv. Colloid Interface Sci. 2011, 167, 2.
[124] Kizilay, E.; Kayitmazer, A. B.; Dubin, P. L. Adv. Colloid Interface Sci. 2011, 167, 24.
[125] Michaeli, I.; Overbeek, J. T. G.; Voorn, M. J. J. Polym. Sci. 1957, 23, 443.
[126] Sato, H.; Nakajima, A. Colloid. Polym. Sci. 1974, 252, 944.
[127] Wang, M.; Wang, Y. L. Soft Matter 2014, 10, 7909.
[128] Zhao, W.; Wang, Y. L. Adv. Colloid Interface Sci. 2017, 239, 199.
[129] Ruan, K.; Xiao, J.; Zhang, L.; Zhao, Z.; Zhang, Y. Acta Chim. Sinica 2002, 60, 961. (阮科, 肖进新, 张翎, 赵振国, 张禹负, 化学学报, 2002, 60, 961.)
[130] Corti, M.; Degiorgio, V. Phys. Rev. Lett. 1985, 55, 2005.
[131] Lindman, B.; Carlsson, A.; Karlström, G.; Malmsten, M. Adv. Colloid Interface Sci. 1990, 32, 183.
[132] Cohen, I.; Economou, P. J. Phys. Chem. 1964, 68, 2801.
[133] Cohen, I.; Economou, P. J. Am. Oil Chem. Soc. 1964, 41, 461.
[134] Cohen, I.; Economou, P.; Libackyj, A. J. Phys. Chem. 1962, 66, 1829.
[135] Cohen, I.; Hiskey, C. F.; Oster, G. J. Colloid Sci. 1954, 9, 243.
[136] Cohen, I.; Vassiliades, T. J. Phys. Chem. 1961, 65, 1774.
[137] Cohen, I.; Vassiliades, T. J. Am. Oil Chem. Soc. 1962, 39, 246.
[138] Wang, M.; Fan, Y.; Han, Y.; Nie, Z.; Wang, Y. L. Langmuir 2013, 29, 14839.
[139] Hoffmann, H.; Thunig, C.; Munkert, U.; Meyer, H. W.; Richter, W. Langmuir 1992, 8, 2629.
[140] Horbaschek, K.; Hoffmann, H.; Thunig, C. J. Colloid Interface Sci. 1998, 206, 439.
[141] Casero, I.; Sicilia, D.; Rubio, S.; Pérez-Bendito, D. Anal. Chem. 1999, 71, 4519.
[142] Paleologos, E. K.; Giannakopoulos, S. S.; Zygoura, P. D.; Kontominas, M. G. J. Agric. Food Chem. 2006, 54, 5236.
[143] Li, Y.; Dubin, P. L.; Havel, H. A.; Edwards, S. L.; Dautzenberg, H. Langmuir 1995, 11, 2486.
[144] Wang, Y. L.; Kimura, K.; Dubin, P. L.; Jaeger, W. Macromolecules 2000, 33, 3324.
[145] Wang, Y. L.; Kimura, K.; Huang, Q.; Dubin, P. L.; Jaeger, W. Macromolecules 1999, 32, 7128.
[146] Dubin, P. L.; Li, Y.; Jaeger, W. Langmuir 2008, 24, 4544.
[147] Löf, D.; Niemiec, A.; Schillén, K.; Loh, W.; Olofsson, G. J. Phys. Chem. B 2007, 111, 5911.
[148] Carlsson, A.; Karlströem, G.; Lindman, B. Langmuir 1986, 2, 536.
[149] Hashidzume, A.; Ohara, T.; Morishima, Y. Langmuir 2002, 18, 9211.
[150] Thalberg, K.; Lindman, B.; Bergfeldt, K. Langmuir 1991, 7, 2893.
[151] Thalberg, K.; Lindman, B.; Karlströem, G. J. Phys. Chem. 1991, 95, 3370.
[152] Watanabe, H.; Tanaka, H. Talanta 1978, 25, 585.
[153] Bordier, C. J. Biol. Chem. 1981, 256, 1604.
[154] Ballesteros-Gómez, A.; Sicilia, M. D.; Rubio, S. Anal. Chim. Acta 2010, 677, 108.
[155] Trakultamupatam, P.; Scamehorn, J. F.; Osuwan, S. Sep. Sci. Technol. 2002, 37, 1291.
[156] Kungsanant, S.; Kittisrisawai, S.; Suriya-Amrit, P.; Kitiyanan, B.; Chavadej, S.; Osuwan, S.; Scamehorn, J. F. Sep. Sci. Technol. 2018, 53, 2662.
[157] Pino, V.; Ayala, J. H.; Afonso, A. M.; González, V. J. Chromatogr. A 2002, 949, 291.
[158] Song, G. Q.; Lu, C.; Hayakawa, K.; Lin, J.-M. Anal. Bioanal. Chem. 2006, 384, 1007.
[159] Taechangam, P.; Scamehorn, J. F.; Osuwan, S.; Rirksomboon, T. Colloids Surf., A 2009, 347, 200.
[160] Mahugo Santana, C.; Sosa Ferrera, Z.; Santana Rodriguez, J. J. Analyst 2002, 127, 1031.
[161] Haddou, B.; Canselier, J. P.; Gourdon, C. Sep. Purif. Technol. 2006, 50, 114.
[162] Ghouas, H.; Haddou, B.; Kameche, M.; Canselier, J. P.; Gourdon, C. J. Surfactants Deterg. 2016, 19, 57.
[163] Pourreza, N.; Rastegarzadeh, S.; Larki, A. Talanta 2008, 77, 733.
[164] Liu, W.; Zhao, W.; Chen, J.; Yang, M. Anal. Chim. Acta 2007, 605, 41.
[165] Appusamy, A.; John, I.; Ponnusamy, K.; Ramalingam, A. Eng. Sci. Technol. Int. J. 2014, 17, 137.
[166] Zhou, J.; Chen, J.; Cheng, Y.; Li, D.; Hu, F.; Li, H. Talanta 2009, 79, 189.
[167] Lee, C.-K.; Su, W.-D. Sep. Sci. Technol. 1999, 34, 3267.
[168] Andreia Mesquita da Silva, M.; Lúcia Azzolin Frescura, V.; José Curtius, A. Spectrochim. Acta, Part B 2001, 56, 1941.
[169] Chen, J.; Teo, K. C. Anal. Chim. Acta 2001, 450, 215.
[170] Chen, J.; Teo, K. C. Anal. Chim. Acta 2001, 434, 325.
[171] Lázaro Gallindo Borges, D.; Mesquita Silva da Veiga, M. A.; Azzolin Frescura, V. L.; Welz, B.; Curtius, A. J. J. Anal. At. Spectrom. 2003, 18, 501.
[172] Manzoori, J. L.; Bavili-Tabrizi, A. Anal. Chim. Acta 2002, 470, 215.
[173] Manzoori, J. L.; Karim-Nezhad, G. Anal. Chim. Acta 2003, 484, 155.
[174] Manzoori, J. L.; Karim-Nezhad, G. Anal. Sci. 2003, 19, 579.
[175] Teo, K. C.; Chen, J. Analyst 2001, 126, 534.
[176] Satti, A. A.; Durukan Temuge, I.; Bektas, S.; Arpa Sahin, Ç. Turk. J. Chem. 2016, 40, 979.
[177] Trakultamupatam, P.; Scamehorn, J. F.; Osuwan, S. Sep. Sci. Technol. 2002, 37, 1291.
[178] Pourreza, N.; Zareian, M. J. Hazard. Mater. 2009, 165, 1124.
[179] de Wuilloud, J. C. A.; Wuilloud, R. G.; Sadi, B. B. M.; Caruso, J. A. Analyst 2003, 128, 453.
[180] Kukusamude, C.; Santalad, A.; Boonchiangma, S.; Burakham, R.; Srijaranai, S.; Chailapakul, O. Talanta 2010, 81, 486.
[181] Zarei, A. R. Anal. Biochem. 2007, 369, 161.
[182] Sicilia, D.; Rubio, S.; Pérez-Bendito, D. Anal. Chim. Acta 2002, 460, 13.
[183] Goryacheva, I. Y.; Shtykov, S. N.; Loginov, A. S.; Panteleeva, I. V. Anal. Bioanal. Chem. 2005, 382, 1413.
[184] Hosseini, S. S. S.; Khezri, S.; Khosravi, A. Appl. Water Sci. 2018, 8, 109.
[185] Jia, G.; Bi, C.; Wang, Q.; Qiu, J.; Zhou, W.; Zhou, Z. Anal. Bioanal. Chem. 2006, 384, 1423.
[186] Ruiz, F. J.; Rubio, S.; Perez-Bendito, D. J. Chromatogr. A 2007, 1163, 269.
[187] Moral, A.; Sicilia, M. D.; Rubio, S. J. Chromatogr. A 2009, 1216, 3740.
[188] Man, B. K. W.; Lam, M. H. W.; Lam, P. K. S.; Wu, R. S. S.; Shaw, G. Environ. Sci. Technol. 2002, 36, 3985.
[189] Weschayanwiwat, P.; Krutlert, D.; Scamehorn, J. F. Sep. Sci. Technol. 2009, 44, 2582.
[190] Weschayanwiwat, P.; Kunanupap, O.; Scamehorn, J. F. Chemosphere 2008, 72, 1043.
[191] Akama, Y.; Tong, A.-J.; Ito, M.; Tanaka, S. Talanta 1999, 48, 1133.
[192] Chen, D.; Zhang, P.; Li, Y.; Mei, Z.; Xiao, Y. Anal. Bioanal. Chem. 2014, 406, 6051.
[193] Wang, Y. L.; Banziger, J.; Dubin, P. L.; Filippelli, G.; Nuraje, N. Environ. Sci. Technol. 2001, 35, 2608.
[194] Chiappisi, L.; Prévost, S.; Grillo, I.; Gradzielski, M. Langmuir 2014, 30, 1778.
[195] Chiappisi, L.; Simon, M.; Gradzielski, M. ACS Appl. Mater. Interfaces 2015, 7, 6139.
[196] Zhao, W.; Fan, Y.; Wang, H.; Wang, Y. L. Langmuir 2017, 33, 6846.
[197] Zhao, W.; Wang, H.; Wang, Y. L. Soft Matter. 2018, 14, 4178.
/
| 〈 |
|
〉 |