二氧化碳参与的自由基型烯烃双官能团化反应
收稿日期: 2019-06-12
网络出版日期: 2019-07-12
基金资助
项目受科技部“973”(No.2015CB856600);国家自然科学基金(Nos.21822108);国家自然科学基金(21801025);教育部霍英东基金(No.161013);中央高校基本业务费资助
Radical-Type Difunctionalization of Alkenes with CO2
Received date: 2019-06-12
Online published: 2019-07-12
Supported by
Project supported by the “973” Project from the Ministry of Science and Technology of China(No.2015CB856600);the National Natural Science Foundation of China(Nos.21822108);the National Natural Science Foundation of China(21801025);the Fok Ying Tung Education Foundation(No.161013);the Fundamental Research Funds for the Central Universities.
二氧化碳(CO2)是一种理想的C1合成子. 利用其参与化学转化合成羧酸和含羰基杂环等具有高附加值的产品, 具有重要意义. 另一方面, 烯烃的双官能团化反应是有机合成化学中的一类重要反应, 可以将简单易得的烯烃快速高效地转化为结构多样性的重要化合物. 然而, 由于CO2反应活性较低, 而且烯烃官能团化反应的选择性难以控制, CO2参与的烯烃双官能团化反应具有较高的挑战性. 近年来, 自由基化学的蓬勃发展为该类反应的开发提供了新的策略, 实现了一些重要转化反应. 基于此, 从CO2参与烯烃的氧-烷基化反应、碳羧基化反应、硅羧基化反应、硫羧基化反应以及双羧基化反应等反应入手, 全面总结和深入分析了最近几年CO2参与的自由基型烯烃双官能团化反应进展; 在介绍上述进展的同时, 重点阐述了其可能经历的四类自由基化学历程. 最后对该领域的未来发展方向进行了展望, 希望为该领域的进一步发展提供一些思路.
张振 , 龚莉 , 周晓渝 , 颜思顺 , 李静 , 余达刚 . 二氧化碳参与的自由基型烯烃双官能团化反应[J]. 化学学报, 2019 , 77(9) : 783 -793 . DOI: 10.6023/A19060208
CO2 is an ideal C1 source in chemical transformations. It is of great significance to utilize CO2 in chemical conversion to synthesize high value-added compounds, including carboxylic acids and carbonyl-containing heterocycles. On the other hand, the difunctionalization of olefins is an important organic reaction, which can efficiently convert easily available olefins into important compounds with structural diversity. However, due to the low reactivity of CO2 and the difficulty in controlling the selectivity, the difunctionalization of olefins with CO2 is highly challenging. Recently, the significant progress of radical chemistry has provided new strategies and promoted the development of novel transformations in this field. This Perspective summarizes the recent progress of the radical-type difunctionalization of olefins with CO2, including the oxy-alkylation, carbocarboxylation, silacarboxylation, thiocarboxylation, and dicarboxylation of alkenes with CO2. At the same time, we also highlight the mechanism with radicals and four kinds of pathways are proposed: (1) Free radicals attack olefins to form new carbon radical intermediates. The radicals are then oxidized to form carbocations, which are further captured by carbonates or carbamates. It is also possible for direct C—O bonding reaction or sequent C—I and C—O bonds formation. (2) The new carbon radical intermediates, in-situ generated through attack of alkenes with radicals, are reduced via single electron transfer into carbanions, which could attack CO2 to form C—C bonds. (3) CO2 is reduced into CO2 radical anions in the highly reductive reaction conditions. Once generated, the CO2 radical anions might attack olefins to form carboxylate bearing more stable carbon radical intermediates (such as benzylic ones) and further form C—C bonds or carbon-heteroatom bonds. (4) Olefins are reduced via single electron transfer into alkenyl free radical anions in the highly reductive reaction conditions. These anions may attack CO2 to form carboxylate bearing carbon radical intermediates and are further reduced to generate carbanions. Finally they may attack another CO2 to form succinic acid derivatives. We point out the challenges and predict the future development in the field, including the more challenging substrates, more reaction types, better selectivities, and deeper mechanistic understanding.
| [1] | (a) Aresta, M. Carbon Dioxide as Chemical Feedstock, Wiley-VCH, Weinheim, 2010. |
| [1] | (b) He, L.-N. Carbon Dioxide Chemistry, Science Press, Beijing, 2013 (in Chinese). |
| [1] | ( 何良年 , 二氧化碳化学, 科学出版社, 北京, 2013). |
| [1] | (c) Centi, G.; Perathoner, S. Green Carbon Dioxide: Advances in CO2 Utilization, Wiley-VCH, Weinheim, 2014. |
| [2] | Selected reviews on CO2 utilization to generate the C—O/C—C bonds, see:(a) Huang, K.; Sun, C.-L.; Shi, Z.-J.Chem. Soc. Rev. 2011, 40, 2435. |
| [2] | (b) Martin, R.; Kleij, A. W. ChemSusChem 2011, 4, 1259. |
| [2] | (c) Tsuji, Y.; Fujihara, T. Chem. Commun. 2012, 48, 9956. |
| [2] | (d) He, M.; Sun, Y.; Han, B. Angew. Chem., Int. Ed. 2013, 52, 9620. |
| [2] | (e) Zhang, L.; Hou, Z. Chem. Sci. 2013, 4, 3395. |
| [2] | (f) Liu, Q.; Wu, L.; Jackstell, R.; Beller, M. Nat. Commun. 2015, 6, 5933. |
| [2] | (g) B?rjesson, M.; Moragas, T.; Gallego, D.; Martin, R. ACS Catal. 2016, 6, 6739. |
| [2] | (h) Zhang, L.; Han, Z.; Zhang, L.; Li, M.; Ding, K. Chin. J. Org. Chem. 2016, 36, 1824 (in Chinese). |
| [2] | ( 张琳莉, 韩召斌, 张磊, 李明星, 丁奎岭, 有机化学, 2016, 36, 1824) |
| [2] | (i) Zhu, Q.; Wang, L.; Xia, C.; Liu, C. Chin. J. Org. Chem. 2016, 36, 2813 (in Chinese). |
| [2] | ( 朱庆, 王露, 夏春谷, 刘超, 有机化学, 2016, 36, 2813) |
| [2] | (j) Zhang, W.; Guo, C.; Lu, X. Chin. J. Catal. 2016, 37, 215. |
| [2] | (k) Zhang, H.; Sun, H.; Li, X. Chin. J. Org. Chem. 2016, 36, 2843 (in Chinese). |
| [2] | (仉花, 孙宏建, 李晓燕, 有机化学, 2016, 36, 2843.) |
| [2] | (l) Zhang, S.; Li, X.; He, L.-N. Acta Chim. Sinica 2016, 74, 17 (in Chinese). |
| [2] | (张帅, 李雪冬, 何良年, 化学学报, Acta Chim. Sinica 2016, 74, 17. |
| [2] | (m) Song, Q.-W.; Zhou, Z.-H.; He, L.-N. Green Chem. 2017, 19, 3707. |
| [2] | (n) Gui, Y.-Y.; Zhou, W.-J.; Ye, J.-H.; Yu, D.-G. ChemSusChem 2017, 10, 1337. |
| [2] | (o) Luo, J.; Larrosa, I. ChemSusChem 2017, 10, 1337. |
| [2] | (p) Zhang, Z.; Ju, T.; Ye, J.-H.; Yu, D.-G. Synlett 2017, 28, 741. |
| [2] | (q) Zou, B.; Hu, C. Chin. J. Chem. 2017, 35, 541. |
| [2] | (r) Li, Y.; Wang, Z.; Liu, Q. Chin. J. Org. Chem. 2017, 37, 1978 (in Chinese). |
| [2] | (李勇, 王征, 刘庆彬, 有机化学, 2017, 37, 1978) |
| [2] | (s) Zhang, W.; Zhang, N.; Guo, C.; Lü, X. Chin. J. Org. Chem. 2017, 37, 1309 (in Chinese). |
| [2] | (张文珍, 张宁, 郭春晓, 吕小兵, 有机化学, 2017, 37, 1309) |
| [2] | (t) Feng, J.; Zeng, S.; Feng, J.; Dong, H.; Zhang, X. Chin. J. Chem. 2018, 36, 961. |
| [2] | (u) Zhao, Y.; Liu, Z. Chin. J. Chem. 2018, 36, 455; |
| [2] | (v) Zhang, Y.; Cen, J.; Xiong, W.; Qi, C.; Jiang, H. Prog. Chem. 2018, 30, 547 (in Chinese). |
| [2] | (张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰, 化学进展, 2018, 30, 547.) |
| [2] | (w) Wang, L.; Sun, W.; Liu, C. Chin. J. Chem. 2018, 36, 353. |
| [2] | (x) Chen, Y.-G.; Xu, X.-T.; Zhang, K.; Li, Y.-Q.; Zhang, L.-P.; Fang, P.; Mei, T.-S. Synthesis 2018, 50, 35. |
| [2] | (y) Wang, S.; Xi, C. Chem. Soc. Rev. 2019, 48, 382. |
| [2] | (z) Chen, Z.; Liu, J.; Cui, H.; Zhang, L.; Su, C. Acta Chim. Sinica 2019, 77, 242 (in Chinese). |
| [2] | (陈之尧, 刘捷威, 崔浩, 张利, 苏成勇, 化学学报, 2019, 77, 242.) |
| [3] | (a) Sasano, K.; Takaya, J.; Iwasawa, N . J. Am. Chem. Soc. 2013, 135, 1251. |
| [3] | (b) Sekine K.; Sadamitsu Y.; Yamada, T. Org. Lett. 2015, 17, 5706. |
| [3] | (c) Moragas, T.; Gaydou, M.; Martin, R. Angew. Chem., Int. Ed. 2016, 55, 5053. |
| [3] | (d) Miao, B.; Li, S.; Li, G.; Ma, S. Org. Lett. 2016, 18, 2556., 6987. |
| [3] | (e) Nogi, K.; Fujihara, T.; Terao, J.; Tsuji, Y. J. Am. Chem. Soc. 2016, 138, 5547. |
| [3] | (f) Gholap, S. S.; Takimoto, M.; Hou, Z. Chem. Eur. J. 2016, 22, 8547. |
| [3] | (g) Yan, S.-S.; Zhu, L.; Ye, J.-H.; Zhang, Z.; Huang, H.; Zeng, H.; Li, C.-J.; Lan, Y.; Yu, D.-G. Chem. Sci. 2018, 9, 4873. |
| [3] | (h) Song, L.; Zhu, L.; Zhang, Z.; Ye, J.-H.; Yan, S.-S.; Han, J.-L.; Yin, Z.-B.; Lan, Y.; Yu, D.-G. Org. Lett. 2018, 20, 3776. |
| [3] | (i) Fu, L.; Li, S.; Cai, Z.; Ding, Y.; Guo, X.; Zhou, L.; Yuan, D.; Sun, Q.; Li, G. Nat. Catal. 2018, 1, 469. |
| [3] | (j) Xiong, W. F.; Yan, D. H.; Qi, C. R.; Jiang, H. F. Org. Lett. 2018, 20, 672. |
| [3] | (k) Wang, S.; Xi, C. J. Org. Lett. 2018, 20, 4131. |
| [3] | (l) Song, L.; Cao, G.-M.; Zhou, W.; Ye, J.-H.; Zhang, Z.; Tian, X.-Y.; Li, J.; Yu, D.-G. Org. Chem. Front. 2018, 5, 2086. |
| [3] | (m) Cai, Z.; Li, S.; Gao, Y.; Li, G. Adv. Synth. Catal. 2018, 360, 4005. |
| [3] | (n) Huang, R.; Li, S.; Fu, L.; Li, G. Asian J. Org. Chem. 2018, 7, 1376. |
| [3] | (o) Gao, Y.; Cai, Z.; Li, S.; Li, G. Org. Lett. 2019, 21, 3663. |
| [3] | (p) Yan, S.-S.; Wu, D.-S.; Ye, J.-H.; Gong, L.; Zeng, X.; Ran, C.-K.; Gui, Y.-Y.; Li, J.; Yu, D.-G. ACS Catal. 2019, 9, 6987. |
| [4] | (a) Seo, H; Katcher, M. H.; Jamison, T. F.Nat. Chem. 2017, 9, 453. |
| [4] | (b) Meng, Q.; Wang, S.; K?nig, B. Angew. Chem.,Int. Ed. 2017, 56, 13426. |
| [4] | (c) Shimomaki, K.; Murata, K.; Martin, R.; Iwasawa, N. J. Am. Chem. Soc. 2017, 139, 9467. |
| [4] | (d) Liao, L.-L.; Cao, G.-M.; Ye, J.-H.; Sun, G.-Q.; Zhou, W.-J.; Gui, Y.-Y.; Yan, S.-S.; Shen, G.; Yu, D.-G. J. Am. Chem. Soc. 2018, 140, 17338. |
| [4] | (e) Ju, T.; Fu, Q.; Ye, J.-H.; Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Tian, X.-Y.; Luo, S.-P.; Li, J.; Yu, D.-G. Angew. Chem. Int. Ed. 2018, 57, 13897. |
| [4] | (f) Fan, X.; Gong, X.; Ma, M.; Wang, R.; Walsh, P. J. Nat. Commun. 2018, 9, 4936. |
| [5] | (a) Wang, H.; Lin, M.-Y.; Fang, H. J.; Chen, T. T.; Lu, J.-X. Chin. J. Chem. 2007, 25, 913. |
| [5] | (b) Wang, H.; Du, Y. F.; Lin, M. Y.; Zhang, K.; Lu, J.-X. Chin. J. Chem. 2008, 26, 1745. |
| [5] | (c) Jiao, K.; Li, Z.; Xu, X.; Zhang, L.; Li, Y.; Zhang, K.; Mei, T.-S. Org. Chem. Front. 2008, 5, 2244. |
| [6] | (a) Xin, Z.; Lescot, C.; Friis, S. D.; Daasbjerg, Kim; Skrydstrup, T. Angew. Chem. Int. Ed. 2015, 54, 6862. |
| [6] | (b) Zhang, W.; Yang, M. W.; Lv, X . Green Chem. 2016, 18, 4181. |
| [6] | (c) Zhang, Z.; Liao, L.-L.; Yan, S.-S.; Wang, L.; He, Y.-Q.; Ye, J.-H.; Li, J.; Zhi, Y.-G.; Yu, D.-G . Angew. Chem., Int. Ed., 2016, 55, 7068. |
| [6] | (d) Wang, S.; Shao, P.; Du, G.; Xi, C . J. Org. Chem. 2016, 81, 6672. |
| [7] | (a) Hu, J.; Ma, J.; Zhu, Q.; Zhang, Z.; Wu, C.; Han, B. Angew. Chem. Int. Ed. 2015, 54, 5399. |
| [7] | (b) Gao, X.; Yu, B.; Yang, Z.; Zhao, Y.; Zhang, H.; Hao, L.; Han, B.; Liu, Z. ACS Catal. 2015, 5, 6648. |
| [7] | (c) Zhao, Y.; Wu, Y.; Yuan, G.; Hao, L.; Gao, X.; Yang, Z.; Yu, B.; Zhang, H.; Liu, Z. Chem. Asian J. 2016, 11, 2735. |
| [8] | (a) Li, Y.; Fang, X.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. 2013, 52, 9568. |
| [8] | (b) Zhang, Z.; Sun, Q.; Xia, C.; Sun, W. Org. Lett. 2016, 18, 6316. |
| [8] | (c) Zhang, Y.; Wang, H.; Yuan, H.; Shi, F. ACS Sustainable Chem. Eng. 2017, 5, 5758. |
| [8] | (d) Ren, X.; Zheng, Z.; Zhang, L.; Wang, Z.; Xia, C.; Ding, K. Angew. Chem., Int. Ed. 2017, 56, 310. |
| [9] | (a) Lehn, J.-M.; Ziessel, R. Proc. Natl. Acad. Sci. USA 1982, 79, 701. |
| [9] | (b) Burgess, S. A.; Kendall, A. J.; Tyler, D. R.; Linehan, J. C.; Appel, A. M. ACS Catal. 2017, 7, 3089. |
| [10] | (a) Pupo, G.; Properzi, R.; List, B. Angew. Chem., Int. Ed. 2016, 55, 6099. |
| [10] | (b) Riemer, D.; Mandaviya, B.; Schilling, W.; G?tz, A. C.; Kühl, T.; Finger, M.; Das, S. ACS Catal. 2018, 8, 3030. |
| [10] | (c) Roy, T.; Kim, M. J.; Yang, Y.; Kim, S.; Kang, G.; Ren, X.; Kadziola, A.; Lee, H.-Y.; Baik, M.-H. Lee, J.-W. ACS Catal. 2019, 9, 6006. |
| [11] | For selected reviews see: (a) Cao, M.-Y.; Ren, X.; Lu, Z. Tetrahedron Lett. 2015, 56, 3732. |
| [11] | (b) Chen, J.-R.; Yu, X.-Y.; Xiao, W.-J . Synthesis 2015, 47, 604. |
| [11] | (c) Koike, T.; Akita, M. Acc. Chem. Res. 2016, 49, 1937. |
| [11] | (d) Koike, T.; Akita, M. Chem 2018, 4, 409. |
| [11] | (e) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654. |
| [11] | (f) Wu, X.; Wu, S.; Zhu, C. Tetrahedron Lett. 2018, 59, 1328. |
| [12] | (a) Yan, M.; Kawamata, Y.; Baran, P. S.. Chem. Rev. 2017, 117, 13230. |
| [12] | (b) Zhang, Z.; Ye, J.-H.; Wu, D.-S.; Zhou, Y.-Q.; Yu, D.-G. Chem. Asian J. 2018, 13, 2292. |
| [12] | (c) Peshkov, V. A.; Pereshivko, O. P.; Nechaev, A. A; Peshkov, A. A.; Vander Eycken, E. V. Chem. Soc. Rev. 2018, 47, 3861. |
| [12] | (d) Tortajada, A.; Juliá-Hernández, F.; B?rjesson, M.; Moragas, T.; Martin, R. Angew. Chem., Int. Ed. 2018, 57, 15948. |
| [12] | (e) Yan, S.-S.; Fu, Q.; Liao, L.-L.; Sun, G.-Q.; Ye, J.-H.; Gong, L.; Bo-Xue, Y.-Z.; Yu, D.-G. Coord. Chem. Rev. 2018, 374, 439. |
| [12] | (f) Cao, Y.; He, X.; Wang, N.; Li, H.-R.; He, L.-N. Chin. J. Chem. 2018, 36, 644. |
| [12] | (g) Hou, J.; Li, J.-S.; Wu, J. Asian J. Org. Chem. 2018, 7, 1439. |
| [12] | (h) Tan, F.; Yin, G. Chin. J. Chem. 2018, 36, 545. |
| [12] | (i) Yeung, C. S. Angew. Chem.,Int. Ed. 2019, 58, 5492. 5492. |
| [13] | Luan, Y.-X.; Ye, M. Tetrahedron Lett. 2018, 59, 853. |
| [14] | (a) Tominaga, K.-I.; Sasaki, Y. Catal. Commun. 2000, 1, 1. |
| [14] | (b) Tominaga, K.-i.; Sasaki, Y. J. Mol. Catal. A: Chem. 2004, 220, 159. |
| [14] | (c) Liu, Q.; Wu, L.; Fleischer, I.; Selent, D.; Franke, R.; Jackstell, R..; Beller, M.. Chem. - Eur. J. 2014, 20, 6888. |
| [14] | (d) Tani, Y.; Kuga, K.; Fujihara, T.; Terao, J.; Tsuji, Y.. Chem. Commun. 2015, 51, 13020. |
| [14] | (e) Gui, Y.-Y.; Hu, N.; Chen, X.-W.; Liao, L.-L.; Ju, T.; Ye, J.-H.; Zhang, Z.; Li, J.; Yu, D.-G.. J. Am. Chem. Soc. 2017, 139, 17011. |
| [15] | Seo, H.; Liu, A.-F.; Jamison, T. F . J. Am. Chem. Soc. 2017, 139, 13969. |
| [16] | (a) Evans, D. A.; Bartroli, J.; Shih, L. T. J. Am. Chem. Soc. 1981, 103, 2127. |
| [16] | (b) Pandit, N.; Singla, R. K.; Shrivastava, B. Int. J. Med. Chem. 2012, 2012, 159285. |
| [16] | (c) Ed.: Acton, Q. A., Oxazolidinones-Advances in Research and Application, Scholarly Editions, Atlanta, U.S., 2012. |
| [17] | Ye, J.-H.; Song, L.; Zhou, W.-J.; Ju, T.; Yin, Z.-B.; Yan, S.-S.; Zhang, Z.; Li, J.; Yu, D.-G. Angew. Chem. Int. Ed. 2016, 55, 10022. |
| [18] | Zhu, L.; Ye, J.-H.; Duan, M.; Qi, X.; Yu, D.-G.; Bai, R.; Lan, Y . Org. Chem. Front. 2018, 5, 633. |
| [19] | Ye, J.-H.; Zhu, L.; Yan, S.-S.; Miao, M.; Zhang, X.-C.; Zhou, W.-J.; Li, J.; Lan, Y.; Yu, D.-G . ACS Catal. 2017, 7, 8324. |
| [20] | Wang, M.-Y.; Cao, Y.; Liu, X.; Wang, N.; He, L.-N.; Li, S.-H. Green Chem. 2017, 19, 1240. |
| [21] | Yin, Z.-B.; Ye, J.-H.; Zhou, W.-J.; Zhang, Y.-H.; Ding, L.; Gui, Y.-Y.; Yan, S.-S.; Li, J.; Yu, D.-G . Org. Lett. 2017, 20, 190. |
| [22] | Zhou, W.-J.; Cao, G.-M.; Sen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Sun, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Angew. Chem., Int. Ed. 2017, 56, 15683. |
| [23] | (a) Sun, L.; Ye, J.-H.; Zhou, W.-J.; Zeng, X.; Yu, D.-G . Org. Lett. 2018, 20, 3049. |
| [23] | (b) For a very recent work, see: Sun, S.; Zhou, C.; Yu, J.-T.; Cheng, J . Org. Lett. 2019, DOI: 10.1021/acs.org- lett.9b02700. |
| [24] | Yatham, V. R.; Shen, Y.; Martin, R. Angew. Chem., Int. Ed. 2017, 56, 10915. |
| [25] | Hou, J.; Ee, A.; Cao, H.; Ong, H.-W.; Xu, J.-H.; Wu, J . Angew. Chem.,Int. Ed. 2017, 57, 17220. |
| [26] | Ye, J.-H.; Miao, M.; Huang, H.; Yan, S.-S.; Yin, Z.-B.; Zhou, W.-J.; Yu, D.-G. Angew. Chem.,Int. Ed. 2017, 56, 15416. |
| [27] | Senboku, H.; Komatsu, H.; Fujimura, Y.; Tokuda, M . Synlett 2001, 2001, 418. |
| [28] | Yuan, G.-Q.; Jiang, H.-F.; Lin, C.; Liao, S.-J . Electrochim. Acta 2008, 53, 2170. |
| [29] | Li, C.-H.; Yuan, G.-Q.; Ji, X.-C.; Wang, X.-J.; Ye, J.-S.; Jiang, H.-F . Electrochim. Acta 2011, 56, 1529. |
| [30] | For a very recent work on phosphonocarboxylation of alkenes with CO2, see: Fu, Q.; Bo, Z.-Y.; Ye, J.-H.; Ju, T.; Huang, H.; Liao, L.-L.; Yu, D.-G . Nat. Commun. 2019, 10, 3592. |
/
| 〈 |
|
〉 |