综述

过渡金属催化不对称C—H键官能团化反应构建轴手性联芳基化合物研究进展

  • 王强 ,
  • 顾庆 ,
  • 游书力
展开
  • 中国科学院上海有机化学研究所 金属有机化学国家重点实验室 上海 200032
王强,2012年和2018年在华中师范大学先后获得学士和博士学位(导师:肖文精教授和陆良秋教授).研究生期间还赴加拿大渥太华大学André M. Beauchemin课题组(2016.11~2018.5)进行交流学习,之后跟随上海有机化学研究所游书力研究员进行博士后研究,主要研究方向为过渡金属催化的不对称C-H键官能团化反应;顾庆,2001年毕业于华东理工大学,获学士学位;2005年和2008年分别获华东理工大学工学硕士和博士学位(导师:周其林教授,伍新燕教授).此后,分别在上海有机化学研究所游书力课题组(2009.02~2011.05)和德国哥廷根大学Lutz Ackermann课题组(2012.11~2013.10)从事博士后研究.2011年6月加入中国科学院上海有机化学研究所游书力课题组任副研究员.主要研究兴趣包括不对称催化以及C-H键官能团化研究;游书力,1996年毕业于南开大学,获得学士学位.随后加入中国科学院上海有机化学研究所,师从戴立信院士,2001获得博士学位.之后跟随Scripps研究所的Jeffery W.Kelly教授进行博士后研究.2004年,成为诺华基因组学研究所研究员(PI).2006年加入上海有机化学研究所金属有机化学国家重点实验室.主要研究兴趣包括不对称催化、合成方法学、天然产物合成以及药物化学.

收稿日期: 2019-06-19

  网络出版日期: 2019-07-17

基金资助

项目受国家自然科学基金(Nos.91856201,21572250)、博士后创新人才支持计划(BX20180342)和中国博士后科学基金(2019M650092)资助.

Recent Progress on Transition-Metal-Catalyzed Asymmetric C-H Bond Functionalization for the Synthesis of Biaryl Atropisomers

  • Wang Qiang ,
  • Gu Qing ,
  • You Shu-Li
Expand
  • State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2019-06-19

  Online published: 2019-07-17

Supported by

Project supported by the National Natural Science Foundation of China (91856201, 21572250), the Initiative Postdocs Supporting Program (BX20180342) and China Postdoctoral Science Foundation (2019M650092).

摘要

在手性分子中,轴手性化合物占据着非常重要的地位.从原子和步骤经济性方面考虑,利用不对称碳-氢官能团化反应构建轴手性化合物是最简洁高效的方法.随着过渡金属催化的不对称碳-氢键官能团化领域的逐步发展,利用该策略来构建轴手性联芳基化合物的研究成果也不断涌现.本文综述了通过过渡金属钯、铑和铱催化的不对称碳-氢键官能团化反应合成轴手性联芳基化合物的最新进展.此外,还介绍了利用这些方法合成多种轴手性配体及其催化的不对称反应,以及这些方法在天然产物合成中的应用.

本文引用格式

王强 , 顾庆 , 游书力 . 过渡金属催化不对称C—H键官能团化反应构建轴手性联芳基化合物研究进展[J]. 化学学报, 2019 , 77(8) : 690 -704 . DOI: 10.6023/A19060222

Abstract

Axial chirality is of significant importance in chiral molecules. Axially chiral biaryls are existed in numerous natural products and biologically active molecules. Moreover, they have been extensively used as chiral catalysts and chiral ligands in asymmetric catalysis. Due to the importance of these privileged scaffolds, considerable attention has been attracted to develop novel, efficient and practical methods for their asymmetric synthesis by utilizing chiral transition-metal catalysis or chiral organocatalysis. Among those reported elegant achievements, asymmetric C—H bond functionalization reactions are the most concise and efficient methods for the synthesis of axial chiral biaryls in terms of atom and step economies. With the advancement of transition-metal-catalyzed asymmetric C—H bond functionalization reactions, they largely promote the field of asymmetric synthesis of axially chiral biaryls. Recent progress on the development of synthesis of axially chiral biaryls via transition metal (Pd-, Rh-, and Ir-) catalyzed asymmetric C—H bond functionalization reactions are summarized in this review. Those mainly include:Rh-catalyzed enantioselective C(sp2)-H bond alkylation and arylation reactions with the combination of rhodium (I) catalyst precursors and chiral phosphine ligands; Rh-catalyzed enantioselective C(sp2)-H bond alkenylation, arylation and annulation reactions with well-defined chiral rhodium (Ⅲ)-Cp(SCp) complexes; Ir-catalyzed enantioselective C(sp2)-H bond arylation reactions with chiral iridium (Ⅲ)-Cp complex and chiral amino acid as co-catalyst; Pd-catalyzed diastereoselective C(sp2)-H bond alkenylation, iodination, and arylation reactions using chiral p-tolyl sulfoxide auxiliary or menthyl phenylphosphate group as a directing group; Pd-catalyzed intramolecular enantioselective C(sp2)-H bond arylation reaction with Pd(0) catalyst precursors and chiral TADDOL-phosphoramidites; Pd-catalyzed intermolecular enantioselective C(sp2)-H bond iodination, alkenylation, alkynylation, allylation and arylation reactions with Pd(Ⅱ) catalyst precursors and mono-N-protected amino acids (MPAAs). In addition, preparation of varieties of novel axially chiral ligands by utilizing these methods and their applications in catalytic asymmetric reactions are also covered. Meanwhile, applications of these methods as key steps in the synthesis of natural products are also discussed.

参考文献

[1] For selected reviews, (a) Chang, J.; Reiner, J.; Xie, J. Chem. Rev. 2005, 105, 4581.
(b) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. 2009, 38, 3193.
(c) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563.
[2] For selected works, see:(a) Wu, Y.-L.; Ferroni, F.; Pieraccini, S.; Schweizer, W. B.; Frank, B. B.; Spada, G. P.; Diederich, F. Org. Biomol. Chem. 2012, 10, 8016.
(b) Zhu, Y.-Y.; Wu, X.-D.; Gu, S.-X.; Pu, L. J. Am. Chem. Soc. 2019, 141, 175. For a review:(c) Pu, L. Acc. Chem. Res. 2012, 45, 150.
[3] (a) Clayden, J.; Moran, W. J.; Edwards, P. J.; LaPlante, S. R. Angew. Chem. Int. Ed. 2009, 48, 6398.
(b) LaPlante, S. R.; Edwards, P. J.; Fader, L. D.; Jakalian, A.; Hucke, O. ChemMedChem 2011, 6, 505.
(c) Zask, A.; Murphy, J.; Ellestad, G. A. Chirality 2013, 25, 265.
(d) Smyth, J. E.; Butler, N. M.; Keller, P. A. Nat. Prod. Rep. 2015, 32, 1562.
[4] For selected reviews, see:(a) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999.
(b) Brunel, J. M. Chem. Rev. 2007, 107, PR1.
(c) Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156.
(d) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047.
(e) Min, C.; Seidel, D. Chem. Soc. Rev. 2017, 46, 5889.
(f) Wang, Q.; Gu, Q.; You, S.-L. Angew. Chem. Int. Ed. 2019, 58, 6818. For a book, see:(g) Privileged Chiral Ligands and Catalysts, Ed.:Zhou, Q.-L., Wiley-VCH, Weinheim, Germany, 2011.
[5] For selected reviews, see:(a) Noyori, R.; Takaya, H. Acc. Chem. Res. 1990, 23, 345.
(b) Chen, Y.; Yekta, S.; Yudin, A. K. Chem. Rev. 2003, 103, 3155.
(c) Li, Y.-M.; Kwong, F.-Y.; Yu, W.-Y.; Chan, A. S. C. Coord. Chem. Rev. 2007, 251, 2119.
(d) Teichert, J. F.; Feringa, B. L. Angew. Chem. Int. Ed. 2010, 49, 2486.
(e) Gao, A.; Ye, Q.; Yu, J.; Liu, W. Chin. J. Org. Chem. 2017, 37, 47(in Chinese). (高安丽, 叶青松, 余娟, 刘伟平, 有机化学, 2017, 37, 47.)
(f) Zhu, X.; Niu, J.; Zhao, X.; Hao, X.; Song, M. Chin. J. Org. Chem. 2018, 38, 118. For selected recent works, see:(g) Dai, J.; Duan, X.; Zhou, J.; Fu, C.; Ma, S. Chin. J. Chem. 2018, 36, 387.
(h) Jia, X.; Ren, X.; Wang, Z.; Xia, C.; Ding, K. Chin. J. Org. Chem. 2019, 39, 207(in Chinese). (贾肖飞, 任新意, 王正, 夏春谷, 丁奎岭, 有机化学, 2019, 39, 207.) For a book, see:(i) Noyori, R. Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994.
[6] For recent reviews on the synthesis of axially chiral biaryls, see:(a) Baudoin, O. Eur. J. Org. Chem. 2005, 4223.
(b) Bringmann, G.; Price Mortimer, A. J.; Keller, P. A.; Gresser, M. J.; Garner, J.; Breuning, M. Angew. Chem. Int. Ed. 2005, 44, 5384.
(c) Wallace, T. W. Org. Biomol. Chem. 2006, 4, 3197.
(d) Tanaka, K. Chem. Asian J. 2009, 4, 508.
(e) Bringmann, G.; Menche, D. Acc. Chem. Res. 2011, 34, 615.
(f) Wencel-Delord, J.; Panossian, A.; Leroux, F. R.; Colobert, F. Chem. Soc. Rev. 2015, 44, 3418.
(g) Ma, G.; Sibi, M. P. Chem. Eur. J. 2015, 21, 11644.
(h) Kumarasamy, E.; Raghunathan, R.; Sibi, M. P.; Sivaguru, J. Chem. Rev. 2015, 115, 11239.
(i) Yang, H.; Yang, X.; Tang, W. Tetrahedron 2016, 72, 6143.
(j) Loxq, P.; Manoury, E.; Poli, R.; Deydier, E.; Labande, A. Coord. Chem. Rev. 2016, 308, 131.
(k) Renzi, P. Org. Biomol. Chem. 2017, 15, 4506.
(l) Zilate, B.; Castrogiovanni, A.; Sparr, C. ACS Catal. 2018, 8, 2981.
(m) Link, A.; Sparr, C. Chem. Soc. Rev. 2018, 47, 3804.
(n) Wang, Y.-B.; Tan, B. Acc. Chem. Res. 2018, 51, 534.
(o) Metrano, A. J.; Miller, S. J. Acc. Chem. Res. 2019, 52, 199.
(p) Zhang, S.; Liao, G.; Shi, B.-F. Chin. J. Org. Chem. 2019, 39, 1522(in Chinese). (张硕, 廖港, 史炳锋, 有机化学, 2019, 39, 1522.)
(q) Liao, G.; Zhou, T.; Yao, Q.-J.; Shi, B.-F. Chem. Commun. 2019, 55, 8514. For a book, see:(r) Atropisomerism and Axial Chirality, Ed.:Lassaletta, J. M., World Scientific, London, UK, 2019.
[7] Kakiuchi, F.; Le Gendre, P.; Yamada, A.; Ohtaki, H.; Murai, S. Tetrahedron:Asymmetry 2000, 11, 2647.
[8] For reviews on asymmetric C-H functionalization, see:(a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
(b) Yang, L.; Huang, H. Catal. Sci. Technol. 2012, 2, 1099.
(c) Engle, K. M.; Yu, J.-Q. J. Org. Chem. 2013, 78, 8927.
(d) Wencel-Delord, J.; Colobert, F. Chem. Eur. J. 2013, 19, 14010.
(e) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173.
(f) Pedroni, J.; Cramer, N. Chem. Commun. 2015, 51, 17647.
(g) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908.
(h) Gao, D.-W.; Gu, Q.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2017, 50, 351;
(i) Saint-Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q. Science 2018, 359, 759. For a book, see:(j) Asymmetric Functionalization of C-H Bonds, Ed.:You, S.-L., RSC:Cambridge, UK, 2015.
[9] Zheng, J.; You, S.-L. Angew. Chem. Int. Ed. 2014, 53, 13244.
[10] (a) Ye, B.; Cramer, N. Science 2012, 338, 504.
(b) Ye, B.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 636.
(c) Ye, B.; Donets, P. A.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 507.
(d) Ye, B.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 7896.
[11] Zheng, J.; Cui, W. J.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 5242.
[12] Greßies, S.; Klauck, F. J. R.; Kim, J. H.; Daniliuc, C. G.; Glorius, F. Angew. Chem. Int. Ed. 2018, 57, 9950.
[13] Wang, Q.; Cai, Z.-J.; Liu, C.-X.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2019, 141, 9504.
[14] Jia, Z. J.; Merten, C.; Gontla, R.; Daniliuc, C. G.; Antonchick, A. P.; Waldmann, H. Angew. Chem. Int. Ed. 2017, 56, 2429.
[15] For reviews on chiral cyclopentadienyl ligands, see:(a) Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308.
(b) Newton, C. G.; Kossler, D.; Cramer, N. J. Am. Chem. Soc. 2016, 138, 3935.
[16] Shan, G.; Flegel, J.; Li, H.; Merten, C.; Ziegler, S.; Antonchick, A. P.; Waldmann, H. Angew. Chem. Int. Ed. 2018, 57, 14250.
[17] Tian, M.; Bai, D.; Zheng, G.; Chang, J.; Li, X. J. Am. Chem. Soc. 2019, 141, 9527.
[18] Jang, Y. S.; Dieckmann, M.; Cramer, N. Angew. Chem. Int. Ed. 2017, 56, 15088.
[19] Börner, A. Phosphorus Ligands in Asymmetric Catalysis:Synthesis and Applications, Vol. 1~3, Wiley-VCH, Weinheim, 2008.
[20] Cramer, N.; Jang, Y. S.; Wozniak, L.; Pedroni, J. Angew. Chem. Int. Ed. 2018, 57, 12901.
[21] For reviews:(a) Wencel-Delord, J.; Colobert, F. Synlett 2015, 26, 2644.
(b) Tang, K.-X.; Wang, C.-M.; Gao, T.-H.; Chen, L.; Fan, L.; Sun, L.-P. Adv. Synth. Catal. 2019, 361, 26.
[22] Wesch, T.; Leroux, F. R.; Colobert, F. Adv. Synth. Catal. 2013, 355, 2139.
[23] (a) Hazra, C. K.; Dherbassy, Q.; Wencel-Delord, J.; Colobert, F. Angew. Chem. Int. Ed. 2014, 53, 13871.
(b) Dherbassy, Q.; Schwertz, G.; Hazra, C. K.; Wesch, T.; Wencel-Delord, J.; Colobert, F. Phosphorus, Sulfur Silicon Relat. Elem. 2015, 190, 1339.
[24] Dherbassy, Q.; Schwertz, G.; Chessé, M.; Hazra, C. K.; Wencel-Delord, J.; Colobert, F. Chem. Eur. J. 2016, 22, 1735.
[25] Dherbassy, Q.; Wencel-Delord, J.; Colobert, F. Tetrahedron 2016, 72, 5238.
[26] Dherbassy, Q.; Djukic, J. P.; Wencel-Delord, J.; Colobert, F. Angew. Chem. Int. Ed. 2018, 57, 4668.
[27] (a) Ma, Y. N.; Zhang, H.-Y.; Yang, S.-D. Org. Lett. 2015, 17, 2034. For reviews, see:(b) Ma, Y. N.; Li, S. X.; Yang, S.-D. Acc. Chem. Res. 2017, 50, 1480.
(c) Zhang, Z.; Dixneuf, P. H.; Soule, J. F. Chem. Commun. 2018, 54, 7265.
[28] Albicker, M., R; Cramer, N. Angew. Chem. Int. Ed. 2009, 48, 9139.
[29] He, C.; Hou, M.; Zhu, Z.; Gu, Z. ACS Catal. 2017, 7, 5316.
[30] Newton, C. G.; Braconi, E.; Kuziola, J.; Wodrich, M. D.; Cramer, N. Angew. Chem. Int. Ed. 2018, 57, 11040.
[31] Yamaguchi, K.; Yamaguchi, J.; Studer, A.; Itami, K. Chem. Sci. 2012, 3, 2165.
[32] Yamaguchi, K.; Kondo, H.; Yamaguchi, J.; Itami, K. Chem. Sci. 2013, 4, 3753.
[33] Nishimoto, Y.; Kondo, H.; Yamaguchi, K.; Yokogawa, D.; Yamaguchi, J.; Itami, K.; Irle, S. J. Org. Chem. 2017, 82, 4900.
[34] Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2008, 47, 4882.
[35] Gao, D.-W.; Gu, Q.; You, S.-L. ACS Catal. 2014, 4, 2741.
[36] Li, S. X.; Ma, Y.-N.; Yang, S.-D. Org. Lett. 2017, 19, 1842.
[37] Zhang, F.-L.; Hong, K.; Li, T. J.; Park, H.; Yu, J.-Q. Science 2016, 351, 252.
[38] Yao, Q.-J.; Zhang, S.; Zhan, B.-B.; Shi, B.-F. Angew. Chem. Int. Ed. 2017, 56, 6617.
[39] Fan, J.; Yao, Q.-J.; Liu, Y.-H.; Liao, G.; Zhang, S.; Shi, B.-F. Org. Lett. 2019, 21, 3352.
[40] Liao, G.; Yao, Q.-J.; Zhang, Z.-Z.; Wu, Y.-J.; Huang, D. Y.; Shi, B.-F. Angew. Chem. Int. Ed. 2018, 57, 3661.
[41] Zhang, S.; Yao, Q.-J.; Liao, G.; Li, X.; Li, H.; Chen, H.-M.; Hong, X.; Shi, B.-F. ACS Catal. 2019, 9, 1956.
[42] Liao, G.; Li, B.; Chen, H.-M.; Yao, Q. J.; Xia, Y. N.; Luo, J.; Shi, B.-F. Angew. Chem. Int. Ed. 2018, 57, 17151.
[43] Liao, G.; Chen, H.-M.; Xia, Y.-N.; Li, B.; Yao, Q.-J.; Shi, B.-F. Angew. Chem. Int. Ed. 2019, DOI:10.1002/anie.201906700.
[44] Wen, W.; Chen, L.; Luo, M.-J.; Zhang, Y.; Chen, Y.-C.; Ouyang, Q.; Guo, Q.-X. J. Am. Chem. Soc. 2018, 140, 9774.

[45] Luo, J.; Zhang, T.; Wang, L.; Liao, G.; Yao, Q.-J.; Wu, Y.-J.; Zhan, B.-B.; Lan, Y.; Lin, X.-F.; Shi, B.-F. Angew. Chem. Int. Ed. 2019, 58, 6708.
[46] Sun, Q.-Y.; Ma, W.-Y.; Yang, K.-F.; Cao, J.; Zheng, Z.-J.; Xu, Z.; Cui, Y.-M.; Xu, L.-W. Chem. Commun. 2018, 54, 10706.
[47] Li, H.; Yan, X.; Zhang, J.; Guo, W.; Jiang, J.; Wang, J. Angew. Chem. Int. Ed. 2019, 58, 6732.

文章导航

/