综述

水滑石基负载型催化剂的制备及其在催化反应中的应用

  • 余俊 ,
  • 杨宇森 ,
  • 卫敏
展开
  • 北京化工大学化学学院 化工资源有效利用国家重点实验室 北京 100029
余俊, 北京化工大学在读研究生, 2018年6月于北京化工大学理学院应用化学专业获得学士学位, 随后加入北京化工大学化工资源有效利用国家重点实验室卫敏教授课题组, 主要研究方向为超分子插层与自组装|杨宇森, 男, 博士, 1991年6月出生于浙江嘉兴, 2014年6月在北京化工大学理学院应用化学专业获得学士学位, 随后加入北京化工大学化工资源有效利用国家重点实验室卫敏教授课题组, 并于2019年6月获得化学工程与技术专业博士学位.博士阶段主要研究水滑石基负载型催化剂的制备及其对选择性加氢反应的催化性能|卫敏, 女, 教授, 博士生导师. 2001年于北京大学获理学博士学位. 2008年佐治亚理工学院访问学者. 2001年至今于北京化工大学从事插层化学与功能材料研究.研究方向: (1)插层结构功能材料的结构设计、组装与性能调控; (2)新型催化材料的结构设计和性能研究.近5年以通讯作者在J. Am. Chem. Soc.Angew. Chem., Int. Ed.Adv. Mater.等刊物发表SCI收录研究论文90余篇; 他引9700余次, 单篇最高他引430余次. 2016年入选英国皇家化学会会士; 现担任Science Bulletin期刊副主编, 催化学报编委.获2012年国家杰出青年基金资助.获2015年中国石油和化学工业联合会科技进步一等奖.入选2017年度科技部中青年科技创新领军人才和国家百千万人才工程, 被授予“有突出贡献中青年专家”称号.获2018年第十五届中国青年科技奖

收稿日期: 2019-07-11

  网络出版日期: 2019-09-05

基金资助

国家自然科学基金(21871021);国家自然科学基金(21521005);国家重点研发计划(2017YFA0206804);中央高校基本科研业务费(buctylkxj01);中央高校基本科研业务费(XK1802-6)

Preparation and Catalytic Performance of Supported Catalysts Derived from Layered Double Hydroxides

  • Jun Yu ,
  • Yusen Yang ,
  • Min Wei
Expand
  • State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029

Received date: 2019-07-11

  Online published: 2019-09-05

Supported by

the National Natural Science Foundation of China(21871021);the National Natural Science Foundation of China(21521005);the National Key Research and Development Program(2017YFA0206804);the Fundamental Research Funds for the Central Universities(buctylkxj01);the Fundamental Research Funds for the Central Universities(XK1802-6)

摘要

负载型催化剂作为一类重要工业催化剂,广泛应用于合成氨工业、能源化工和精细化工等重要的工业生产过程.水滑石(LDHs)是一类阴离子型二维层状无机功能材料,其具有层板元素比例可调、金属阳离子高分散和结构拓扑转变等特性,在多相催化中,其作为负载型催化剂的前体或者载体具有广阔的应用前景.总结了以LDHs或其拓扑转变得到的复合金属氧化物(MMO)作为催化剂载体,以LDHs作为催化剂前体,制备高性能的负载型单金属或双金属催化剂,聚焦于其在电催化、氧化脱氢、选择性加氢和合成气转化反应中的最新研究进展.最后,进一步讨论了LDHs基负载型催化剂未来的发展趋势以及面临的挑战,并提出了解决这些问题的有效方案.

本文引用格式

余俊 , 杨宇森 , 卫敏 . 水滑石基负载型催化剂的制备及其在催化反应中的应用[J]. 化学学报, 2019 , 77(11) : 1129 -1139 . DOI: 10.6023/A19070260

Abstract

Supported catalysts have been widely used in a large variety of industrial processes, including ammonia synthesis, energy conversion and fine chemical synthesis. Layered double hydroxides (LDHs) are a class of two-dimensional functional anionic materials. By virtue of the unique structural characteristics (e.g., tunability of host layers, high dispersion of metal cations and structure topological transformation), LDHs have shown potential applications in heterogeneous catalysis as precursors or supports. In this review, high-performance monometallic or bimetallic supported catalysts by using LDHs as supports/precursors, or by utilizing mixed metal oxides (MMO) as supports via topotactic transformation from LDHs is highlighted. Their recent progresses in electrocatalysis, oxidative dehydrogenation, selective hydrogenation and syngas conversion reaction are reviewed. In the final section, future opportunities and challenges in the preparation of LDHs-based catalysts are discussed, and some strategies to resolve these critical problems are further proposed.

参考文献

[1] White R. J.; Rafael L.; Budarin V. L.; Clark J. H.; Macquarrie D. J. Chem. Soc. Rev. 2009, 38, 481
[2] Wang Q.; O'Hare D. Chem. Rev. 2012, 112, 4124
[3] Yu J.; Wang Q.; O'Hare D.; Sun L. Chem. Soc. Rev. 2017, 46, 5950
[4] Xu M.; Wei M. Adv. Funct. Mater. 2018, 28, 1802943
[5] Jia Y.; Wang H.; Zhao X.; Liu X.; Wang Y.; Fan Q.; Zhou J. Acta Chim. Sinica 2015, 73, 1207
[5] 贾 云生; 王 火焰; 赵 雪松; 刘 晓伟; 王 一柳; 范 群龙; 周 健民 化学学报 2015, 73, 1207
[6] Fan G.; Li F.; Evans D. G.; Duan X. Chem. Soc. Rev. 2014, 43, 7040
[7] Li T.; Zhao J.; Li Y.; Quan Z.; Xu J. Acta Chim. Sinica 2017, 75, 485
[7] 李 甜甜; 赵 继宽; 李 尧; 全 贞兰; 徐 洁 化学学报 2017, 75, 485
[8] Meng X.; Yang Y.; Chen L.; Xu M.; Zhang X.; Wei M. ACS Catal. 2019, 9, 4226
[9] Gao Z.; Liu F. Q.; Wang L.; Luo F. Inorg. Chem. 2019, 58, 3247
[10] Xia C.; Gao R.; Li K.; Yang Y.; Lin Y.; Yan D. Chin. J. Chem. 2017, 35, 1701
[11] Chen H.; Huang S.; Zhang Z.; Liu Y.; Wang X. Acta Chim. Sinica 2017, 75, 560
[11] 陈 海军; 黄 舒怡; 张 志宾; 刘 云海; 王 祥科 化学学报 2017, 75, 560
[12] Wang N.; Pang H.; Yu S.; Gu P.; Song S.; Wang H.; Wang X. Acta Chim. Sinica 2019, 77, 143
[12] 王 宁; 庞 宏伟; 于 淑君; 顾 鹏程; 宋 爽; 王 宏青; 王 祥科 化学学报 2019, 77, 143
[13] Bing W.; Zheng L.; He S.; Rao D.; Xu M.; Zheng L.; Wang B.; Wang Y.; Wei M. ACS Catal. 2018, 8, 656
[14] Yang Y.; Chen L.; Chen Y.; Liu W.; Feng H.; Wang B.; Zhang X.; Wei M. Green. Chem. 2019
[15] Zhou J.; Yang Y.; Li C.; Zhang S.; Chen Y.; Shi S.; Wei M. J. Mater. Chem. A 2016, 4, 12825
[16] Feng J.; He Y.; Liu Y.; Du Y.; Li D. Chem. Soc. Rev. 2015, 44, 5291
[17] Yan K.; Liu Y.; Lu Y.; Chai J.; Sun L. Catal. Sci. Technol. 2017, 7, 1622
[18] Li X.; Jiang P.; Lu Y.; Zhang W.; Dong Y. Acta Chim. Sinica 2012, 70, 544
[18] 李 小磊; 蒋 平平; 卢 云; 张 伟杰; 董 玉明 化学学报 2012, 70, 544
[19] Sun K.; Gao X.; Bai Y.; Tan M.; Yang G.; Tan Y. Catal. Sci. Technol. 2018, 8, 3936
[20] Wang L.; Yu Q.; Feng C.; Zhang Y.; Hu J. Chin. J. Org. Chem. 2019, 39, 1787
[20] 王 力耕; 余 琴; 冯 春; 张 岩; 胡 军 有机化学 2019, 39, 1787
[21] Gao X.; Zhou Y.; Jing F.; Luo J.; Huang Q.; Chu W. Chin. J. Chem. 2017, 35, 1009
[22] Li X.; Zhang Q.; Wang H.; Li Y. Chin. J. Chem. 2017, 35, 196
[23] He S.; Li C.; Chen H.; Su D.; Zhang B.; Cao X.; Wang B.; Wei M.; Evans D. G.; Duan X. Chem. Mater. 2013, 25, 1040
[24] Chen H.; He S.; Cao X.; Zhang S.; Xu M.; Pu M.; Su D.; Wei M.; Evans D. G.; Duan X. Chem. Mater. 2016, 28, 4751
[25] Gao Z.; Liu F.; Wang L.; Luo F. Appl. Surf. Sci. 2019, 480, 548
[26] Wang Y.; Chao X.; Zhang Z.; Liu D.; Ru C.; Wang S. Adv. Funct. Mater. 2018, 28, 1703363
[27] Zhao Y.; Chen G.; Bian T.; Zhou C.; Waterhouse G. I.; Wu L. Z.; Tung C. H.; Smith L. J.; O'Hare D.; Zhang T. Adv. Mater. 2016, 27, 7823
[28] Chen Y.; Li C.; Zhou J.; Zhang S.; Rao D.; He S.; Wei M.; Evans D. G.; Duan X. ACS Catal. 2015, 5, 5756
[29] Li C.; Dou Y.; Liu J.; Chen Y.; He S.; Wei M.; Evans D. G.; Duan X. Chem. Commun. 2013, 49, 9992
[30] Zhang S.; Fan G.; Feng L. Green Chem. 2013, 15, 2389
[31] Zhou L.; Shao M.; Zhang C.; Zhao J.; He S.; Rao D.; Wei M.; Evans D. G.; Duan X. Adv. Mater. 2017, 29, 1604080
[32] Zhang F.; Zhao X.; Feng C.; Bo L.; Tao C.; Wei L.; Lei X.; Xu S. ACS Catal. 2011, 1, 232
[33] Liu Y.; He Y.; Zhou D.; Feng J.; Li D. Catal. Sci. Technol. 2016, 6, 3027
[34] Zhu Y.; An Z.; He J. J. Catal. 2016, 341, 44
[35] Wang Z.; Xu S. M.; Xu Y.; Tan L.; Wang X.; Zhao Y.; Duan H.; Song Y. F. Chem. Sci. 2019, 10, 378
[36] Li C.; Wei M.; Evans D. G.; Duan X. Small 2014, 10, 4469
[37] Xu M.; He S.; Chen H.; Cui G.; Zheng L.; Wang B.; Wei M. ACS Catal. 2017, 7, 7600
[38] Liu N.; Xu M.; Yang Y.; Zhang S.; Zhang J.; Wang W.; Zheng L.; Hong S.; Wei M. ACS Catal. 2019, 9, 2707
[39] Clarke J. B.; Hastie J. W.; Kihlborg L. H. E.; Metselaar R.; Thackeray M. M. Pure Appl. Chem. 1994, 66, 577
[40] Valente J. S.; Rodriguez-Gattorno G.; Valle-Orta M.; Torres-Garcia E. Mater. Chem. Phys. 2012, 133, 621
[41] Ferreira O. P.; Alves O. L.; Gouveia D. X.; Souza Filho A. G.; de Paiva J. A. C.; Filho J. M. J. Solid. State. Chem. 2004, 177, 3058
[42] Zhao X.; Zhang F.; Xu S.; Evans D. G.; Duan X. Chem. Mater. 2010, 22, 3933
[43] He S.; Zhang S.; Lu J.; Zhao Y.; Ma J.; Wei M.; Evans D. G.; Duan X. Chem. Commun. 2011, 47, 10797
[44] Meng Q.; Yan H. Mol. Simul. 2017, 43, 1338
[45] Costa D. G.; Rocha A. B.; Souza W. F.; Chiaro S. S. X.; Leit o A. A. J. Phys. Chem. C 2012, 116, 13679
[46] Zhang S. T.; Dou Y.; Zhou J.; Pu M.; Yan H.; Wei M.; Evans D. G.; Duan X. ChemPhysChem 2016, 17, 2754
[47] He S.; An Z.; Wei M.; Evans D. G.; Duan X. Chem. Commun. 2013, 49, 5912
[48] Yan H.; Lu J.; Wei M.; Ma J.; Li H.; He J.; Evans D. G.; Duan X. J. Mol. Struct.:Theochem. 2008, 866, 34
[49] He Y.; Fan J.; Feng J.; Luo C.; Yang P.; Li D. J. Catal. 2015, 331, 118
[50] Tongsakul D.; Nishimura S.; Ebitani K. ACS Catal. 2013, 3, 2199
[51] Francová D.; Tanchoux N.; Gérardin C.; Trens P.; Prinetto F.; Ghiotti G.; Tichit D.; Coq B. Microporous Mesoporous Mater. 2007, 99, 118
[52] Wang L.; Zhang J.; Zhu Y.; Xu S.; Wang C.; Bian C.; Meng X.; Xiao F. -S. ACS Catal. 2017, 7, 7461
[53] Sun T.; Fan G.; Li F. Ind. Eng. Chem. Res. 2013, 52, 5538
[54] Zhao M. Q.; Zhang Q.; Zhang W.; Huang J. Q.; Zhang Y.; Su D. S.; Wei F. J. Am. Chem. Soc. 2010, 132, 14739
[55] Gao W.; Zhao Y.; Chen H.; Chen H.; Li Y.; He S.; Zhang Y.; Wei M.; Evans D. G.; Duan X. Green Chem. 2015, 17, 1525
[56] Wu J.; Gao G.; Li J.; Sun P.; Long X.; Li F. Appl. Catal., B 2017, 203, 227
[57] Dung N. T.; Tichit D.; Chiche B. H.; Coq B. Appl. Catal., A 1998, 169, 179
[58] Koike M.; Li D.; Nakagawa Y.; Tomishige K. ChemSusChem 2012, 5, 2312
[59] Li C.; Chen Y.; Zhang S.; Zhou J.; Wang F.; He S.; Wei M.; Evans D. G.; Duan X. ChemCatChem 2014, 6, 824
[60] Dresselhaus M. S.; Thomas I. L. Nature 2001, 414, 332
[61] Jingshan L.; Jeong-Hyeok I.; Mayer M. T.; Marcel S.; Mohammad Khaja N.; Nam-Gyu P.; S David T.; Jin F. H.; Michael G. T. Science 2014, 345, 1593
[62] Wang Q.; Shang L.; Shi R.; Zhang X.; Waterhouse G. I. N.; Wu L.-Z.; Tung C.-H.; Zhang T. Nano Energy 2017, 40, 382
[63] Wang Q.; Shang L.; Shi R.; Zhang X.; Zhao Y.; Waterhouse G. I. N.; Wu L.-Z.; Tung C.-H.; Zhang T. Adv. Energy Mater. 2017, 7, 1700467
[64] Qiao B.; Wang A.; Yang X.; Allard L. F.; Jiang Z.; Cui Y.; Liu J.; Li J.; Zhang T. Nat. Chem. 2011, 3, 634
[65] Zhu C.; Fu S.; Shi Q.; Du D.; Lin Y. Angew. Chem., Int. Ed. 2017, 56, 13944
[66] Li P.; Wang M.; Duan X.; Zheng L.; Cheng X.; Zhang Y.; Kuang Y.; Li Y.; Ma Q.; Feng Z.; Liu W.; Sun X. Nat. Commun. 2019, 10, 1711
[67] Zhang J.; Liu J.; Xi L.; Yu Y.; Chen N.; Sun S.; Wang W.; Lange K. M.; Zhang B. J. Am. Chem. Soc. 2018, 140, 3876
[68] Zhao Y.; Zhang X.; Jia X.; Waterhouse G. I. N.; Shi R.; Zhang X.; Zhan F.; Tao Y.; Wu L.-Z.; Tung C.-H.; O'Hare D.; Zhang T. Adv. Energy Mater. 2018, 8, 1703585
[69] Jia X.; Zhang X.; Zhao J.; Zhao Y.; Zhao Y.; Waterhouse G. I. N.; Shi R.; Wu L.-Z.; Tung C.-H.; Zhang T. J. Energy Chem. 2019, 34, 57
[70] Zhao Y.; Jia X.; Chen G.; Shang L.; Waterhouse G. I.; Wu L. Z.; Tung C. H.; O'Hare D.; Zhang T. J. Am. Chem. Soc. 2016, 138, 6517
[71] He L.; Huang Y.; Wang A.; Wang X.; Chen X.; Delgado J. J.; Zhang T. Angew. Chem., Int. Ed. 2012, 51, 6191
[72] Gao W.; Li C.; Chen H.; Wu M.; He S.; Wei M.; Evans D. G.; Duan X. Green Chem. 2014, 16, 1560
[73] Zhao J.; Shao M.; Yan D.; Zhang S.; Lu Z.; Li Z.; Cao X.; Wang B.; Wei M.; Evans D. G.; Duan X. J. Mater. Chem. A 2013, 1, 5840
[74] Takato M.; Yusuke M.; Hisashi F.; Tomoo M.; Koichiro J.; Kiyotomi K. Angew. Chem., Int. Ed. 2008, 47, 138
[75] Mitran G.; Cacciaguerra T.; Loridant S.; Tichit D.; Marcu I.-C. Appl. Catal., A 2012, 417~418, 153
[76] Wang L.; Zhang J.; Meng X.; Zheng D.; Xiao F. -S. Catal. Today 2011, 175, 404
[77] He Y.; Feng J.; Brett G. L.; Liu Y.; Miedziak P. J.; Edwards J. K.; Knight D. W.; Li D.; Hutchings G. J. ChemSusChem 2015, 8, 3314
[78] Blanco S.; Carrazán S. R. G.; Rives V. Appl. Catal., A 2008, 342, 93
[79] Pakhomov N. A. Kinet. Catal. 2001, 42, 334
[80] Sun P.; Siddiqi G.; Chi M.; Bell A. T. J. Catal. 2010, 274, 192
[81] Siddiqi G.; Sun P.; Galvita V.; Bell A. T. J. Catal. 2010, 274, 200
[82] Sun P.; Siddiqi G.; Vining W. C.; Chi M.; Bell A. T. J. Catal. 2011, 282, 165
[83] Belskaya O. B.; Stepanova L. N.; Nizovskii A. I.; Kalinkin A. V.; Erenburg S. B.; Trubina S. V.; Kvashnina K. O.; Leont'eva N. N.; Gulyaeva T. I.; Trenikhin M. V.; Bukhtiyarov V. I.; Likholobov V. A. Catal. Today 2019, 329, 187
[84] Shimizu K. I.; Kon K.; Shimura K.; Hakim S. S. M. A. J. Catal. 2013, 300, 242
[85] Chen H.; He S.; Xu M.; Wei M.; Evans D. G.; Duan X. ACS Catal. 2017, 7, 2735
[86] Mckenna F. M.; Mantarosie L.; Wells R. P. K.; Hardacre C.; Anderson J. A. Catal. Sci. Technol. 2012, 2, 632
[87] Kahsar K. R.; Schwartz D. K.; Will J. M. J. Am. Chem. Soc. 2014, 136, 520
[88] He Y.; Liang L.; Liu Y.; Feng J.; Ma C.; Li D. J. Catal. 2014, 309, 166
[89] Liu Y. N.; Feng J. T.; He Y. F.; Sun J. H.; Li D. Q. Catal. Sci. Technol. 2015, 5, 1231
[90] Liu Y.; Zhao J.; He Y.; Feng J.; Wu T.; Li D. J. Catal. 2017, 348, 135
[91] Stassi J. P.; Zgolicz P. D.; Miguel S. R. D.; Scelza O. A. J. Catal. 2013, 306, 11
[92] Ide M. S.; Bing H.; Neurock M.; Davis R. J. ACS Catal. 2012, 2, 671
[93] Li C.; Chen Y.; Zhang S.; Xu S.; Zhou J.; Wang F.; Wei M.; Evans D. G.; Duan X. Chem. Mater. 2013, 25, 3888
[94] Yang Y.; Rao D.; Chen Y.; Dong S.; Wang B.; Zhang X.; Wei M. ACS Catal. 2018, 8, 11749
[95] Kong X.; Zheng R.; Zhu Y.; Ding G.; Zhu Y.; Li Y. -W. Green Chem. 2015, 17, 2504
[96] Yan K.; Chen A. Energy 2013, 58, 357
[97] Gupta M.; Smith M. L.; Spivey J. J. ACS Catal. 2011, 1, 641
[98] Spivey J. J.; Egbebi A. Chem. Soc. Rev. 2007, 36, 1514
[99] Gao W.; Zhao Y.; Liu J.; Huang Q.; He S.; Li C.; Zhao J.; Wei M. Catal. Sci. Technol. 2013, 3, 1324
[100] Cao A.; Liu G.; Yue Y.; Zhang L.; Liu Y. RSC Adv. 2015, 5, 58804
[101] Wang L.; Cao A.; Liu G.; Zhang L.; Liu Y. Appl. Surf. Sci. 2016, 360, 77
[102] Cao A.; Liu G.; Wang L.; Liu J.; Yue Y.; Zhang L.; Liu Y. J. Mater. Sci. 2016, 51, 5216
[103] Han X.; Fang K.; Zhou J.; Zhao L.; Sun Y. J. Colloid. Interface Sci. 2016, 470, 162
[104] Ning X.; An Z.; He J. J. Catal. 2016, 340, 236
文章导航

/