综述

富锂锰基正极材料的表面改性研究进展

  • 李钊 ,
  • 王忠 ,
  • 班丽卿 ,
  • 王建涛 ,
  • 卢世刚
展开
  • a 有研科技集团有限公司国家动力电池创新中心 北京 100088
    b 国联汽车动力电池研究院有限责任公司 北京 100088
    c 北京有色金属研究总院 北京 100088
李钊, 男, 1992年生, 硕士生. 2014年毕业于西北师范大学, 获得环境工程学士学位. 2014~2017年, 先后在锂电企业和中科院电工研究所从事锂离子电池材料和器件的研发工作. 2017年进入北京有色金属研究总院攻读材料科学与工程硕士学位.主要进行高性能富锂锰基正极材料的结构和界面研究|王忠, 男, 1967年生, 教授, 博士生导师. 2007年在北京科技大学获博士学位, 同年进入北京有色金属研究总院工作至今, 主要从事锂离子电池材料的结构和电化学性能的研究|卢世刚, 男, 1966年生, 教授, 博士生导师. 1993年在莫斯科大学获得化学博士学位.现任北京有色金属研究总院副总工程师, 国家动力电池创新中心首席专家, 承担新一代动力电池及材料的国家重点研发项目

收稿日期: 2019-07-16

  网络出版日期: 2019-10-09

基金资助

国家重点研发计划(2018YFB0104400);国家自然科学基金-联合基金(U1764255)

Recent Advances on Surface Modification of Li- and Mn-Rich Cathode Materials

  • Zhao Li ,
  • Zhong Wang ,
  • Liqin Ban ,
  • Jiantao Wang ,
  • Shigang Lu
Expand
  • a National Power Battery Innovation Center, GRINM Group Co., Ltd, Beijing 100088, China
    b China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
    c General Research Institute for Nonferrous Metals, Beijing 100088, China

Received date: 2019-07-16

  Online published: 2019-10-09

Supported by

the National Key Research and Development Program of China(2018YFB0104400);the Natural Science Foundation-the Joint Foundation of China(U1764255)

摘要

随着电动汽车和储能电站等电力设备的快速发展,对高能量密度的锂离子电池的需求日益增加.高比容量(>250 mAh·g-1)的富锂锰基正极材料,有望成为锂离子电池实现高比能量(>350 Wh·kg-1)的关键正极材料.富锂锰基正极材料的Li2MnO3相和晶格氧参与电化学反应使其拥有了高容量,但这也导致表面结构和成分容易发生变化,进而造成富锂锰基正极材料存在着诸如首次库伦效率低、倍率性能差和循环后电压和容量衰减严重等问题.因此,本文综述了富锂锰基正极材料的表面包覆、表面掺杂和表面化学处理三种表面改性方法,并进一步讨论了三种表面改性方法对材料性能提升的机制机理和优缺点.在此基础上,介绍了近些年基于多方法的表面联合改性工作.通过对富锂锰基正极材料进行表面联合改性,不仅可以改善其结构稳定性和抑制电极/电解液界面副反应,而且可以缓解其在循环过程中不断发生的结构转变和晶格氧的析出问题.最后,对富锂锰基正极材料表面改性研究方向进行了总结和展望.

本文引用格式

李钊 , 王忠 , 班丽卿 , 王建涛 , 卢世刚 . 富锂锰基正极材料的表面改性研究进展[J]. 化学学报, 2019 , 77(11) : 1115 -1128 . DOI: 10.6023/A19070265

Abstract

With the rapid development of electric cars and energy storage power stations, there is an increasing demand for lithium ion batteries with high energy density. Li- and Mn-rich (LMR) cathode materials with large specific capacity (>250 mAh·g-1) are supposed to accomplish lithium ion batteries with high energy density (>350 Wh·kg-1). The high capacity performance of LMR cathode materials are resulted from the lattice oxygen redox reaction induced by the electrochemical activation of the Li2MnO3 phase. However, the activation of the Li2MnO3 phase and oxygen redox reaction lead to lattice oxygen release and structure transformation, which cause some serious problems such as low initial columbic efficiency, poor rate capability, voltage and capacity degradation after subsequent cycles. The oxygen release and structure transformation always start from the surface, indicating that the surface stability is significant to LMR cathode materials. In this paper, surface modifications such as surface coating, surface doping and surface chemical treatment are reviewed and the mechanism of three surface modification methods for LMR cathode materials are discussed in further. Surface coating is one of the most widely surface modification methods, which can suppress the electrode/electrolyte side reaction and reduce the transition metal dissolution. The effect of surface coating on improving electrochemical performance of LMR cathode materials is always determined by the characteristic of coating layer materials including non-active coating layer, electrochemical active coating layer, Li+ conductive coating layer and electronic conductive coating layer. Surface doping has shown to be an effective method in suppressing oxygen release and structural transformation. Surface chemical treatment has resulted in reducing irreversible capacity loss by activating Li2MnO3 phase. On this basis, surface integrated strategies combined several surface modified methods are introduced and discussed in recent years. The surface intergrated strategies not only enhance the structural stability and suppress electrode/electrolyte surface-interface reaction, but also have an effective role on mitigating structure transformation and lattice oxygen release. Finally, we wish that our review would provide research directions for surface modified strategies of LMR cathode materials in future.

参考文献

[1] Goodenough J. B. Energy Storage Mater. 2015, 1, 158
[2] Kalluri S.; Yoon M.; Jo M.; Park S.; Myeong S.; Kim J.; Dou S. X.; Guo Z.; Cho J. Adv. Energy Mater. 2017, 7, 1601507
[3] Deng B.; Sun W.; Wang H.; Chen T.; Li X.; Qu M.; Peng G. Acta Chim. Sinica 2018, 76, 259
[3] 邓 邦为; 孙 万琦; 王 昊; 陈 滔; 李 璇; 瞿 美臻; 彭 工厂 化学学报 2018, 76, 259
[4] Zheng Z.; Wu Z.; Xiang W.; Guo X. Acta Chim. Sinica 2017, 75, 501
[4] 郑 卓; 吴 振国; 向 伟; 郭 孝东 化学学报 2017, 75, 501
[5] Hua W.; Wang Y.; Zhong Y.; Wang G.; Zhong B.; Fang B.; Guo X.; Liao S.; Wang H. Chin. J. Chem. 2015, 33, 261
[6] Wen L.; Pilgun O.; Xien L.; Min-Joon L.; Woongrae C.; Sujong C.; Youngsik K.; Jaephil C. Angew. Chem. 2015, 54, 4440
[7] Hou P.; Yin J.; Ding M.; Huang J.; Xu X. Small 2017, 13, 1701802
[8] Manthiram A.; Knight J. C.; Myung S. T.; Oh S. M.; Sun Y. K. Adv. Energy Mater. 2016, 6, 1501010
[9] Erickson E. M.; Schipper F.; Penki T. R.; Shin J. Y.; Erk C.; Chesneau F. F.; Markovsky B.; Aurbach D. J. Electrochem. Soc. 2017, 164, A6220
[10] Kim J.; Lee H.; Cha H.; Yoon M.; Park M.; Cho J. Adv. Energy Mater. 2018, 8, 1702028
[11] Numata K.; Sakaki C.; Yamanaka S. Chem. Lett. 1997, 1997, 725
[12] Numata K.; Sakaki C.; Yamanaka S. Solid State Ionics 1999, 117, 257
[13] Lu Z. H.; Macneil D. D.; Dahn J. R. Electrochem. Solid-State Lett. 2001, 7, A503
[14] Johnson C. S.; Kim J. S.; Lefief C.; Li N.; Vaughey J. T.; Thackeray M. M. Electrochem. Commun. 2004, 6, 1085
[15] Thackeray M. M.; Johnson C. S.; Vaughey J. T.; Li N.; Hackney S. A. J. Mater. Chem. 2005, 15, 2257
[16] Thackeray M. M.; Kang S. H.; Johnson C. S.; Vaughey J. T.; Benedek R.; Hackney S. A. J. Mater. Chem. 2007, 17, 3112
[17] Wang Z.; Yin Y.; Ren Y.; Wang Z.; Gao M.; Ma T.; Zhuang W.; Lu S.; Fan A.; Amine K. Nano Energy 2017, 31, 247
[18] Nayak P. K.; Erickson E. M.; Schipper F.; Penki T. R.; Munichandraiah N.; Adelhelm P.; Sclar H.; Amalraj F.; Markovsky B.; Aurbach D. Adv. Energy Mater. 2018, 8, 1702397
[19] Li M.; Lu J.; Chen Z.; Amine K. Adv. Mater. 2018, 30, 1800561
[20] Zuo Y.; Li B.; Jiang N.; Chu W.; Zhang H.; Zou R.; Xia D. Adv. Mater. 2018, 30, 1707255
[21] Zheng J.; Myeong S.; Cho W.; Yan P.; Xiao J.; Wang C.; Cho J.; Zhang J. G. Adv. Energy Mater. 2016, 7, 1601284
[22] Assat G.; Tarascon J. -M. Nat. Energy 2018, 3, 373
[23] Yang C.; Gong Z.; Zhao W.; Yang Y. Acta Chim. Sinica 2017, 75, 212
[23] 杨 春; 龚 正良; 赵 文高; 杨 勇 化学学报 2017, 75, 212
[24] Gauthier M.; Carney T. J.; Grimaud A.; Giordano L.; Pour N.; Chang H. H.; Fenning D. P.; Lux S. F.; Paschos O.; Bauer C. J. Phys. Chem. Lett. 2015, 6, 4653
[25] Xu B.; Fell C. R.; Chi M.; Meng Y. S. Energy Environ. Sci. 2011, 4, 2223
[26] Oh P.; Ko M.; Myeong S.; Kim Y.; Cho J. Adv. Energy Mater. 2014, 4, 1400631
[27] Yan P.; Nie A.; Zheng J.; Zhou Y.; Lu D.; Zhang X.; Xu R.; Belharouak I.; Zu X.; Xiao J. Nano Lett. 2015, 15, 514
[28] Croy J. R.; Balasubramanian M.; Gallagher K. G.; Burrell A. K. Acc. Chem. Res. 2015, 48, 2813
[29] Kim J.-S.; Johnson C. S.; Vaughey J. T.; Thackeray M. M.; Hackney S. A.; Yoon W.; Grey C. P. Chem. Mater. 2004, 16, 1996
[30] Kang S. H.; Kempgens P.; Greenbaum S.; Kropf A. J.; Amine K.; Thackeray M. M. J. Mater. Chem. 2007, 17, 2069
[31] Jarvis K. A.; Deng Z.; Allard L. F.; Manthiram A.; Ferreira P. J. Chem. Mater. 2011, 23, 3614
[32] Mccalla E.; Lowartz C. M.; Brown C. R.; Dahn J. R. Chem. Mater. 2013, 25, 912
[33] Shunmugasundaram R.; Senthil Arumugam R.; Dahn J. R. Chem. Mater. 2015, 27, 757
[34] Shunmugasundaram R.; Senthil Arumugam R.; Harris K. J.; Goward G. R.; Dahn J. R. Chem. Mater. 2016, 28, 55
[35] Zheng J.; Xu P.; Gu M.; Xiao J.; Browning N. D.; Yan P.; Wang C.; Zhang J. -G. Chem. Mater. 2015, 27, 1381
[36] Gu M.; Belharouak I.; Zheng J.; Wu H.; Xiao J.; Genc A.; Amine K.; Thevuthasan S.; Baer D. R.; Zhang J. -G. ACS Nano 2013, 7, 760
[37] Hong J.; Seo D. H.; Kim S. W.; Gwon H.; Oh S. T.; Kang K. J. Mater. Chem. 2010, 20, 10179
[38] Xiao B.; Sun X. Adv. Energy Mater. 2018, 8, 1802057
[39] Hu E.; Yu X.; Lin R.; Bi X.; Lu J.; Bak S.; Nam K.-W.; Xin H. L.; Jaye C.; Fischer D. A.; Amine K.; Yang X. -Q. Nat. Energy 2018, 3, 690
[40] Dai K.; Wu J.; Zhuo Z.; Li Q.; Sallis S.; Mao J.; Ai G.; Sun C.; Li Z.; Gent W. E.; Chueh W. C.; Chuang Y.-d.; Zeng R.; Shen Z.-x.; Pan F.; Yan S.; Piper L. F. J.; Hussain Z.; Liu G.; Yang W. Joule 2019, 3, 518
[41] Zheng J.; Myeong S.; Cho W.; Yan P.; Xiao J.; Wang C.; Cho J.; Zhang J. G. Adv. Energy Mater. 2017, 7, 1601284
[42] Shi S. J.; Tu J. P.; Tang Y. Y.; Liu X. Y.; Zhang Y. Q.; Wang X. L.; Gu C. D. Electrochim. Acta 2013, 88, 671
[43] Han E.; Li Y.; Zhu L.; Zhao L. Solid State Ionics 2014, 255, 113
[44] Yan P.; Zheng J.; Zhang X.; Xu R.; Amine K.; Xiao J.; Zhang J.-G.; Wang C. -M. Chem. Mater. 2016, 28, 857
[45] Kobayashi G.; Irii Y.; Matsumoto F.; Ito A.; Ohsawa Y.; Yamamoto S.; Cui Y.; Son J. Y.; Sato Y. J. Power Sources 2016, 303, 250
[46] Lee G.-H.; Choi I. H.; Oh M. Y.; Park S. H.; Nahm K. S.; Aravindan V.; Lee Y. -S. Electrochim. Acta 2016, 194, 454
[47] Xie Y.; Chen S.; Lin Z.; Yang W.; Zou H.; Sun R. W. -Y. Electrochem. Commun. 2019, 99, 65
[48] Mu K.; Cao Y.; Hu G.; Du K.; Yang H.; Gan Z.; Peng Z. Electrochim. Acta 2018, 273, 88
[49] Chen C.; Geng T.; Du C.; Zuo P.; Cheng X.; Ma Y.; Yin G. J. Power Sources 2016, 331, 91
[50] Rastgoo-Deylami M.; Javanbakht M.; Omidvar H. Solid State Ionics 2019, 331, 74
[51] Zheng J. M.; Zhang Z. R.; Wu X. B.; Dong Z. X.; Zhu Z.; Yang Y. J. Electrochem. Soc. 2008, 155, A775
[52] Zheng J.; Gu M.; Xiao J.; Polzin B. J.; Yan P.; Chen X.; Wang C.; Zhang J. -G. Chem. Mater. 2014, 26, 6320
[53] Pang S.; Wang Y.; Chen T.; Shen X.; Xi X.; Liao D. Ceram. Int. 2016, 42, 5397
[54] Hu G.; Qi X.; Hu K.; Lai X.; Zhang X.; Du K.; Peng Z.; Cao Y. Electrochim. Acta 2018, 265, 391
[55] Sun S.; Wan N.; Wu Q.; Zhang X.; Pan D.; Bai Y.; Lu X. Solid State Ionics 2015, 278, 85
[56] Liu X.; Huang T.; Yu A. Electrochim. Acta 2015, 163, 82
[57] Liu H.; Qian D.; Verde M. G.; Zhang M.; Baggetto L.; An K.; Chen Y.; Carroll K. J.; Lau D.; Chi M.; Veith G. M.; Meng Y. S. ACS Appl. Mater. Interfaces 2015, 7, 19189
[58] Lu C.; Wu H.; Zhang Y.; Liu H.; Chen B.; Wu N.; Wang S. J. Power Sources 2014, 267, 682
[59] Wu Y.; Murugan A. V.; Manthiram A. J. Electrochem. Soc. 2008, 155, A635
[60] Ma J.; Li B.; An L.; Wei H.; Wang X.; Yu P.; Xia D. J. Power Sources 2015, 277, 393
[61] Xiao B.; Wang B.; Liu J.; Kaliyappan K.; Sun Q.; Liu Y.; Dadheech G.; Balogh M. P.; Yang L.; Sham T. -K. Nano Energy 2017, 34, 120
[62] Xie Q.; Zhao C.; Hu Z.; Huang Q.; Chen C.; Liu K. RSC Adv. 2015, 5, 77324
[63] Chen J.; Li Z.; Xiang H.; Wu W.; Cheng S.; Zhang L.; Wang Q.; Wu Y. RSC Adv. 2015, 5, 3031
[64] Wu F.; Li N.; Su Y.; Lu H.; Zhang L.; An R.; Wang Z.; Bao L.; Chen S. J. Mater. Chem. 2012, 22, 1489
[65] Liu Y.; Liu S.; Wang Y.; Chen L.; Chen X. J. Power Sources 2013, 222, 455
[66] Guo S.; Yu H.; Liu P.; Liu X.; Li D.; Chen M.; Ishida M.; Zhou H. J. Mater. Chem. A 2014, 2, 4422
[67] Jin Y.; Xu Y.; Sun X.; Xiong L.; Mao S. Appl. Surf. Sci. 2016, 384, 125
[68] He H.; Zan L.; Zhang Y. J. Alloys Compd. 2016, 680, 95
[69] Jin Y.; Xu Y.; Xiong L.; Sun X.; Li L.; Li L. Solid State Ionics 2017, 310, 62
[70] Li Y.; Huang H.; Yu J.; Xia Y.; Liang C.; Gan Y.; Zhang J.; Zhang W. J. Alloys Compd. 2019, 783, 349
[71] Wang Z.; Liu E.; He C.; Shi C.; Li J.; Zhao N. J. Power Sources 2013, 236, 25
[72] Wang Z.; Lu H.-Q.; Yin Y.-P.; Sun X.-Y.; Bai X.-T.; Shen X.-L.; Zhuang W.-D.; Lu S. -G. Rare Metals 2017, 36, 899
[73] Zhao T.; Li L.; Chen R.; Wu H.; Zhang X.; Chen S.; Xie M.; Wu F.; Lu J.; Amine K. Nano Energy 2015, 15, 164
[74] Bian X.; Fu Q.; Bie X.; Yang P.; Qiu H.; Pang Q.; Chen G.; Du F.; Wei Y. Electrochim. Acta 2015, 174, 875
[75] Chen D.; Zheng F.; Li L.; Chen M.; Zhong X.; Li W.; Lu L. J. Power Sources 2017, 341, 147
[76] Lee Y.; Lee J.; Lee K. Y.; Mun J.; Lee J. K.; Choi W. J. Power Sources 2016, 315, 284
[77] Zhou L.; Yin Z.; Tian H.; Ding Z.; Li X.; Wang Z.; Guo H. Appl. Surf. Sci. 2018, 456, 763
[78] Martha S. K.; Nanda J.; Kim Y.; Unocic R. R.; Pannala S.; Dudney N. J. J. Mater. Chem. A 2013, 1, 5587
[79] Kang S. H.; Thackeray M. M. Electrochem. Commun. 2009, 11, 748
[80] Qiao Q. Q.; Zhang H. Z.; Li G. R.; Ye S. H.; Wang C. W.; Gao X. P. J. Mater. Chem. A 2013, 1, 5262
[81] Zheng F.; Yang C.; Xiong X.; Xiong J.; Hu R.; Chen Y.; Liu M. Angew. Chem. Int. Ed. 2015, 54, 13058
[82] Chen Y.; Xie K.; Zheng C.; Ma Z.; Chen Z. ACS Appl. Mater. Interfaces 2014, 6, 16888
[83] Li H.; Zhou H. Chem. Commun. 2012, 48, 1201
[84] Xia Q.; Zhao X.; Xu M.; Ding Z.; Liu J.; Chen L.; Ivey D. G.; Wei W. J. Mater. Chem. A 2015, 3, 3995
[85] Pang S.; Xu K.; Wang Y.; Shen X.; Wang W.; Su Y.; Zhu M.; Xi X. J. Power Sources 2017, 365, 68
[86] Park K.; Kim J.; Park J.-H.; Hwang Y.; Han D. J. Power Sources 2018, 408, 105
[87] Ma Y.; Liu P.; Xie Q.; Zhang G.; Zheng H.; Cai Y.; Li Z.; Wang L.; Zhu Z.-Z.; Mai L. Nano Energy 2019, 59, 184
[88] Wu F.; Li N.; Su Y.; Shou H.; Bao L.; Yang W.; Zhang L.; An R.; Chen S. Adv. Mater. 2013, 25, 3722
[89] Wang L.; Zhao D.; Liu X.; Yu P.; Fu H. Acta Chim. Sinica 2017, 75, 231
[89] 王 蕾; 赵 东东; 刘 旭; 于 鹏; 付 宏刚 化学学报 2017, 75, 231
[90] Li Z.; Wang Z.; Li Q.; Ban L.; Zhuang W.; Lu S. Chinese J. Inorg. Chem. 2019, 35, 1561
[90] 李 钊; 王 忠; 李 强; 班 丽卿; 庄 卫东; 卢 世刚 无机化学学报 2019, 35, 1561
[91] Song B.; Lai M. O.; Liu Z.; Liu H.; Lu L. J. Mater. Chem. A 2013, 1, 9954
[92] Zhang J.; Lu Q.; Fang J.; Wang J.; Yang J.; Nuli Y. ACS Appl. Mater. Interfaces 2014, 6, 17965
[93] Wu C.; Fang X.; Guo X.; Mao Y.; Ma J.; Zhao C.; Wang Z.; Chen L. J. Power Sources 2013, 231, 44
[94] Wang D.; Wang X.; Yang X.; Yu R.; Ge L.; Shu H. J. Power Sources 2015, 293, 89
[95] Wu F.; Liu J.; Li L.; Zhang X.; Luo R.; Ye Y.; Chen R. ACS Appl. Mater. Interfaces 2016, 8, 23095
[96] Kim I. T.; Knight J. C.; Celio H.; Manthiram A. J. Mater. Chem. A 2014, 2, 8696
[97] Chen D.; Tu W.; Chen M.; Hong P.; Zhong X.; Zhu Y.; Yu Q.; Li W. Electrochim. Acta 2016, 193, 45
[98] Liu H.; Chen C.; Du C.; He X.; Yin G.; Song B.; Zuo P.; Cheng X.; Ma Y.; Gao Y. J. Mater. Chem. A 2015, 3, 2634
[99] Nayak P. K.; Grinblat J.; Levi M.; Levi E.; Kim S.; Choi J. W.; Aurbach D. Adv. Energy Mater. 2016, 6, 1502398
[100] Su X.; Wang X.; Chen H.; Yu Z.; Qi J.; Tao S.; Chu W.; Song L. Chin. J. Chem. 2017, 35, 1853
[101] Qing R. P.; Shi J. L.; Xiao D. D.; Zhang X. D.; Yin Y. X.; Zhai Y. B.; Gu L.; Guo Y. G. Adv. Energy Mater. 2016, 6, 1501914
[102] Liu S.; Liu Z.; Shen X.; Li W.; Gao Y.; Banis M. N.; Li M.; Chen K.; Zhu L.; Yu R. Adv. Energy Mater. 2018, 8, 1802105
[103] Zhang X.; Cao S.; Yu R.; Li C.; Huang Y.; Wang Y.; Wang X.; Gairong C. ACS Appl. Energy Mater. 2019, 2, 1563
[104] Huang J.; Liu H.; Hu T.; Meng Y. S.; Luo J. J. Power Sources 2018, 375, 21
[105] Zhao Y.; Liu J.; Wang S.; Ji R.; Xia Q.; Ding Z.; Wei W.; Liu Y.; Wang P.; Ivey D. G. Adv. Funct. Mater. 2016, 26, 4760
[106] Shang H.; Ning F.; Li B.; Zuo Y.; Lu S.; Xia D. ACS Appl. Mater. Interfaces 2018, 10, 21349
[107] Kang S. H.; Johnson C. S.; Vaughey J. T.; Amine K.; Thackeray M. M. J. Electrochem. Soc. 2006 153
[108] Paik Y.; Grey C. P.; Johnson C. S.; Kim J.-S.; Thackeray M. M. Chem. Mater. 2002, 14, 5109
[109] Benedek R.; Thackeray M. M.; Van De Walle A. Chem. Mater. 2008, 20, 5485
[110] Denis Y.; Yanagida K.; Nakamura H. J. Electrochem. Soc. 2010, 157, A1177
[111] Oh P.; Myeong S.; Cho W.; Lee M.-J.; Ko M.; Jeong H. Y.; Cho J. Nano Lett. 2014, 14, 5965
[112] Zhang J.; Lei Z.; Wang J.; Nuli Y.; Yang J. ACS Appl. Mater. Interfaces 2015, 7, 15821
[113] Erickson E. M.; Sclar H.; Schipper F.; Liu J.; Tian R.; Ghanty C.; Burstein L.; Leifer N.; Grinblat J.; Talianker M. Adv. Energy Mater. 2017, 7, 1700708
[114] Qiu B.; Zhang M.; Wu L.; Wang J.; Xia Y.; Qian D.; Liu H.; Hy S.; Chen Y.; An K.; Zhu Y.; Liu Z.; Meng Y. S. Nat. Commun. 2016, 7, 12108
[115] Danna Q.; Bo X.; Miaofang C.; Shirley M. Y. Phys. Chem. Chem. Phys. 2014, 16, 14665
[116] James C.; Wu Y.; Sheldon B. W.; Qi Y. Solid State Ionics 2016, 289, 87
[117] Huang Z.; Xiong T.; Lin X.; Tian M.; Zeng W.; He J.; Shi M.; Li J.; Zhang G.; Mai L. J. Power Sources 2019, 432, 8
[118] Liu W.; Oh P.; Liu X.; Myeong S.; Cho W.; Cho J. Adv. Energy Mater. 2015, 5, 1500274
[119] Zhang X. D.; Shi J. L.; Liang J. Y.; Yin Y. X.; Zhang J. N.; Yu X. Q.; Guo Y. G. Adv. Mater. 2018, 30, 1801751
[120] Cui H.; Li H.; Liu J.; Zhang Y.; Cheng F.; Chen J. Inorg. Chem. Front. 2019, 6, 1694
[121] Guo H.; Jia K.; Han S.; Zhao H.; Qiu B.; Xia Y.; Liu Z. Adv. Mater. Interfaces 2018, 5, 1701465
[122] Li Q.; Zhou D.; Zhang L.; Ning D.; Chen Z.; Xu Z.; Gao R.; Liu X.; Xie D.; Schumacher G. Adv. Funct. Mater. 2019, 29, 1806706
文章导航

/