综述

细胞分泌物中的聚糖分析

  • 熊莹莹 ,
  • 陈云龙 ,
  • 鞠熀先
展开
  • 南京大学化学化工学院 生命分析化学国家重点实验室 南京 210023
熊莹莹2016年本科毕业于河南大学化学系,2016~2019为南京大学化学化工学院硕士研究生,主要从事细胞聚糖分泌物检测方向的研究;陈云龙,2010年本科毕业于南京大学,2010至2015年在南京大学硕博连读,于2015年取得博士学位后留校工作.2015~2017年任助理研究员,2018年至今为副研究员,期间于2018年3月至2019年3月在英国牛津大学化学系访学研修.主要研究方向为聚糖相关的细胞分析化学;鞠熀先教授于1992年在南京大学完成了本科、硕士和博士阶段的学习后留校任职,1993年被聘为副教授.1996~1997年为加拿大Montreal大学博士后,1999年被聘为南京大学教授、博士生导师和分析化学教研室主任(至2005年).2003年获国家杰出青年科学基金,2007年被遴选为教育部"长江学者"特聘教授.2011年至今任南京大学生命分析国家重点实验室主任,主要从事生物分析化学与分子诊断,包括纳生物传感,纳米生物技术,免疫、细胞与基因分析,临床检验与分析诊断技术等.

收稿日期: 2019-08-10

  网络出版日期: 2019-10-09

基金资助

项目受国家自然科学基金(Nos.21635005,21827812,21890741)资助.

Glycan Analysis in Cellular Secretion

  • Xiong Yingying ,
  • Chen Yunlong ,
  • Ju Huangxian
Expand
  • State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023

Received date: 2019-08-10

  Online published: 2019-10-09

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21635005, 21827812, 21890741).

摘要

聚糖是细胞的一种重要组成物质,主要由单糖、寡糖或者多糖组成.它们与蛋白质或脂质相连接,形成糖缀合物.聚糖结构的多样性决定了糖缀合物包含丰富的关于细胞和疾病状态的信息.因此,细胞分泌的聚糖分析对细胞以及疾病状态的监测具有重要意义.基于在细胞外聚糖的相关研究,综述了细胞分泌聚糖的类型、生物功能和生物学意义,并重点归纳了细胞分泌聚糖的识别方法和检测技术,展望了细胞分泌物中聚糖分析的前景.

本文引用格式

熊莹莹 , 陈云龙 , 鞠熀先 . 细胞分泌物中的聚糖分析[J]. 化学学报, 2019 , 77(12) : 1221 -1229 . DOI: 10.6023/A19080299

Abstract

Glycans are important components of mammalian cells, which exists extensively in eukaryocytes. Glycans are mainly consisted of monosaccharides, oligosaccharides and polysaccharides. They are connected to proteins or lipids through glycosylation, which constitute glycoconjugates. Glycosylation is one of the most important post-modifications of proteins, which mediate a wide variety of biological processes, including cell growth and differentiation, cell-cell communication, immune response, pathogen interaction, and intracellular signaling events. Because of the complex marshalling sequences, diversiform connection types and multiple branch structures, glycans are endowed with various structures. The diversity of glycan structure brings glycoconjugates with abundant information of cellular function. Among all the factors, human diseases act as an important ingredient which can induce unnatural glycosylation process. Glycoconjugates have been chosen as an efficient biomarker in the area of disease surveillance and targeted drug therapy. Thus, analysis of secreted glycans is of great importance for monitoring the states of cells or diseases in clinical diagnosis and treatment. Based on recent research of extracellular glycans, this review introduces the types of glycans in cellular secretion and their biological functions or significances, summarizes the identification or detection techniques of the secreted glycans, including lectin identifications, chemical covalent identifications and glycan metabolic marker techniques. Detection technologies of cell secretory glycan have been emphatically introduced in this review, which mainly contain spectrophotometry techniques, chromatography techniques, mass-spectrography techniques, fluorescence methods, electrochemical processes, enzyme linked immunosorbent assay techniques and western blot methods. After summarizing the progresses in this field during the past few decades, we outlook the future development of the analysis of cell secretory glycans. As far as we concern, in situ identification and quantitative detection will be the most challenging but meaningful topic of this field. We hope this review can be provided as a useful guidance for the investigating of glycosylation or glycan-related biological processes.

参考文献

[1] Xiao, H. P.; Suttapitugsakul, S.; Sun, F. X.; Wu, R. H. Acc. Chem. Res. 2018, 51, 1796.
[2] Zhang, L.-X.; Du, X.-F.; Zeng, Y. Acta Chim. Sinica 2016, 74, 149(in Chinese). (张丽霞, 杜秀芳, 曾盈, 化学学报, 2016, 74, 149.)
[3] Krishnamoorthy, L.; Mahal, L. K. ACS Chem. Biol. 2009, 4, 715.
[4] Pinho, S. S.; Reis, C. A. Nat. Rev. Cancer 2015, 15, 540.
[5] Brockhausen, I. BBA-Gen. Subjects 1999, 1473, 67.
[6] Clerc, F.; Reiding, K. R.; Jansen, B. C.; Kammeijer, G. S. M.; Bondt, A.; Wuhrer, M. Glycoconjugate J. 2016, 33, 309.
[7] Zhang, Z. J.; Wuhrer, M.; Holst, S. Glycoconjugate J. 2018, 35, 139.
[8] Fuster, M. M.; Esko, J. D. Nat. Rev. Cancer 2005, 5, 526.
[9] Rich, J. R.; Withers, S. G. Nat. Chem. Biol. 2009, 5, 206.
[10] Dennis, J. W.; Nabi, I. R.; Demetriou, M. Cell 2009, 139, 1229.
[11] Pinho, S. S.; Figueiredo, J.; Cabral, J.; Carvalho, S.; Dourado, J.; Magalhaes, A.; Gartner, F.; Mendonca, A. M.; Isaji, T.; Cu, J. G.; Carneiro, F.; Seruca, R.; Taniguchi, N.; Reis, C. A. BBA-Gen. Subjects 2013, 1830, 2690.
[12] Zhao, Y. Y.; Sato, Y.; Isaji, T.; Fukuda, T.; Matsumoto, A.; Miyoshi, E.; Gu, J. G.; Taniguchi, N. FEBS J. 2008, 275, 1939.
[13] Takeuchi, H.; Haltiwanger, R. S. Biochem. Biophys. Res. Commun. 2014, 453, 235.
[14] Boscher, C.; Dennis, J. W.; Nabi, I. R. Curr. Opin. Cell Biol. 2011, 23, 383.
[15] Ju, T. Z.; Otto, V. I.; Cummings, R. D. Angew. Chem., Int. Ed. 2011, 50, 1770.
[16] Gilgunn, S.; Conroy, P. J.; Saldova, R.; Rudd, P. M.; O'Kennedy, R. J. Nat. Rev. Urol. 2013, 10, 99.
[17] Ohtsubo, K.; Marth, J. D. Cell 2006, 126, 855.
[18] Kailemia, M. J.; Park, D.; Lebrilla, C. B. Anal. Bioanal. Chem. 2017, 409, 395.
[19] Adamczyk, B.; Tharmalingam, T.; Rudd, P. M. BBA-Gen. Subjects 2012, 1820, 1347.
[20] Theocharis, A. D.; Skandalis, S. S.; Gialeli, C.; Karamanos, N. K. Adv. Drug Del. Rev. 2016, 97, 4.
[21] Muiznieks, L.; Keeley, F. W. Biochem. Cell Biol. 2010, 88, 392.
[22] George, E. L.; Georgeslabouesse, E. N.; Patelking, R. S.; Rayburn, H.; Hynes, R. O. Development 1993, 119, 1079.
[23] Aumailley, M.; Bruckner-Tuderman, L.; Carter, W. G.; Deutzmann, R.; Edgar, D.; Ekblom, P.; Engel, J.; Engvall, E.; Hohenester, E.; Jones, J. C. R.; Kleinman, H. K.; Marinkovich, M. P.; Martin, G. R.; Mayer, U.; Meneguzzi, G.; Miner, J. H.; Miyazaki, K.; Patarroyo, M.; Paulsson, M.; Quaranta, V.; Sanes, J. R.; Sasaki, T.; Sekiguchi, K.; Sorokin, L. M.; Talts, J. F.; Tryggvason, K.; Uitto, J.; Virtanen, I.; von der Mark, K.; Wewer, U. M.; Yamada, Y.; Yurchenco, P. D. Matrix Biol. 2005, 24, 326.
[24] Feng, Y. M.; Guo, Y. N.; Li, Y. R.; Tao, J.; Ding, L.; Wu, J.; Ju, H. X. Anal. Chim. Acta 2018, 1039, 108.
[25] Kim, S. H.; Turnbull, J.; Guimond, S. J. Endocrinol. 2011, 209, 139.
[26] Bonnans, C.; Chou, J.; Werb, Z. Nat. Rev. Mol. Cell Biol. 2014, 15, 786.
[27] Varki, A. Trends Mol. Med. 2008, 14, 351.
[28] Wu, J.; Xie, X. L.; Nie, S.; Buckanovich, R. J.; Lubman, D. M. J. Proteome Res. 2013, 12, 3342.
[29] Saldova, R.; Royle, L.; Radcliffe, C. M.; Hamid, U. M. A.; Evans, R.; Arnold, J. N.; Banks, R. E.; Hutson, R.; Harvey, D. J.; Antrobus, R.; Petrescu, S. M.; Dwek, R. A.; Rudd, P. M. Glycobiology 2007, 17, 1344.
[30] Ye, B.; Skates, S.; Mok, S. C.; Horick, N. K.; Rosenberg, H. F.; Vitonis, A.; Edwards, D.; Sluss, P.; Han, W. K.; Berkowitz, R. S.; Cramer, D. W. Clin. Cancer. Res. 2006, 12, 432.
[31] Zhang, H.; Li, X. J.; Martin, D. B.; Aebersold, R. Nat. Biotechnol. 2003, 21, 660.
[32] Vajaria, B. N.; Patel, K. R.; Begum, R.; Shah, F. D.; Patel, J. B.; Shukla, S. N.; Patel, P. S. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, 764.
[33] Theocharis, A. D.; Gialeli, C.; Bouris, P.; Giannopoulou, E.; Skandalis, S. S.; Aletras, A. J.; Iozzo, R. V.; Karamanos, N. K. FEBS J. 2014, 281, 5023.
[34] Iozzo, R. V.; Sanderson, R. D. J. Cell. Mol. Med. 2011, 15, 1013.
[35] Chandler, E. M.; Seo, B. R.; Califano, J. P.; Eguiluz, R. C. A.; Lee, J. S.; Yoon, C. J.; Tims, D. T.; Wang, J. X.; Cheng, L.; Mohanan, S.; Buckley, M. R.; Cohen, I.; Nikitin, A. Y.; Williams, R. M.; Gourdon, D.; Reinhart-King, C. A.; Fischbach, C. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 9786.
[36] Durbeej, M. Cell Tissue Res. 2010, 339, 259.
[37] Hallmann, R.; Horn, N.; Selg, M.; Wendler, O.; Pausch, F.; Sorokin, L. M. Physiol. Rev. 2005, 85, 979.
[38] Arcinas, A.; Yen, T. Y.; Kebebew, E.; Macher, B. A. J. Proteome Res. 2009, 8, 3958.
[39] Schultz, M. J.; Swindall, A. F.; Bellis, S. L. Cancer Metastasis Rev. 2012, 31, 501.
[40] Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.
[41] Hu, Y. M.; Borges, C. R. Analyst 2017, 142, 2748.
[42] Reis, C. A.; Osorio, H.; Silva, L.; Gomes, C.; David, L. J. Clin. Pathol. 2010, 63, 322.
[43] Zhang, Z. J.; Wuhrer, M.; Holst, S. Glycoconjugate J. 2018, 35, 139.
[44] Liu, Y. S.; He, J. T.; Li, C.; Benitez, R.; Fu, S.; Marrero, J.; Lubman, D. M. J. Proteome Res. 2010, 9, 798.
[45] Zeng, Y.; Ramya, T. N. C.; Dirksen, A.; Dawson, P. E.; Paulson, J. C. Nat. Methods 2009, 6, 207.
[46] Han, E.; Ding, L.; Qian, R. C.; Bao, L.; Ju, H. X. Anal. Chem. 2012, 84, 1452.
[47] Li, D. J.; Chen, Y.; Liu, Z. Chem. Soc. Rev. 2015, 44, 8097.
[48] Liu, L.-T.; Zhang, Y.; Jiao, J.; Yang, P.-Y.; Lu, H.-J. Acta Chim. Sinica 2013, 71, 535(in Chinese). (刘丽婷, 张莹, 焦竞, 杨芃原, 陆豪杰, 化学学报, 2013, 71, 535.)
[49] Liu, Z.; He, H. Acc. Chem. Res. 2017, 50, 2185.
[50] Qiu, J.; Zhang, Y.; Lu, H.-J.; Yang, P.-Y. Acta Chim. Sinica 2011, 69, 2123(in Chinese). (仇娟, 张莹, 陆豪杰, 杨芃原, 化学学报, 2011, 69, 2123.)
[51] Ma, Y. Y.; Li, X. L.; Li, W.; Liu, Z. ACS Appl. Mater. Interfaces 2018, 10, 40918.
[52] Wang, J.; Chen, P. Acta Chim. Sinica 2017, 75, 1173(in Chinese). (王杰, 陈鹏, 化学学报, 2017, 75, 1173.)
[53] Palaniappan, K. K.; Bertozzi, C. R. Chem. Rev. 2016, 116, 14277.
[54] Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.
[55] Jewett, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 2010, 39, 1272.
[56] Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi, C. R. ACS Chem. Biol. 2006, 1, 644.
[57] Ning, X. H.; Guo, J.; Wolfert, M. A.; Boons, G. J. Angew. Chem., Int. Ed. 2008, 47, 2253.
[58] Lee, T. S.; Kim, Y.; Zhang, W. Q.; Song, I. H.; Tung, C. H. Biochim. Biophys. Acta-Gen. Subj. 2018, 1862, 1091.
[59] Shah, M. H.; Telang, S. D.; Shah, P. M.; Patel, P. S. Glycoconjugate J. 2008, 25, 279.
[60] Sawhney, H.; Kumar, C. A. Cancer Biomark. 2011, 10, 43.
[61] Rajpura, K. B.; Patel, P. S.; Chawda, J. G.; Shah, R. M. J. Oral Pathol. Med. 2005, 34, 263.
[62] Krishnan, K.; Balasundaram, S. J. Clin. Diagn. Res. 2017, 11, ZC25.
[63] Wongkham, S.; Boonla, C.; Kongkham, S.; Wongkham, C.; Bhudhisawasdi, V.; Sripa, B. Clin. Biochem. 2001, 34, 537.
[64] Patel, P. S.; Rawal, G. N.; Balar, D. B. Gynecol. Oncol. 1993, 50, 294.
[65] Vuckovic, F.; Theodoratou, E.; Thaci, K.; Timofeeva, M.; Vojta, A.; Stambuk, J.; Pucic-Bakovic, M.; Rudd, P. M.; Derek, L.; Servis, D.; Wennerstrom, A.; Farrington, S. M.; Perola, M.; Aulchenko, Y.; Dunlop, M. G.; Campbell, H.; Lauc, G. Clin. Cancer. Res. 2016, 22, 3078.
[66] Saldova, R.; Royle, L.; Radcliffe, C. M.; Hamid, U. M. A.; Evans, R.; Arnold, J. N.; Banks, R. E.; Hutson, R.; Harvey, D. J.; Antrobus, R.; Petrescu, S. M.; Dwek, R. A.; Rudd, P. M. Glycobiology 2007, 17, 1344.
[67] Kontro, H.; Joenvaara, S.; Haglund, C.; Renkonen, R. Proteomics 2014, 14, 1713.
[68] Rohrer, J. S. Anal. Biochem. 2000, 283, 3.
[69] Raju, T. S. Curr. Opin. Immunol. 2008, 20, 471.
[70] Irani, V.; Guy, A. J.; Andrew, D.; Beeson, J. G.; Ramsland, P. A.; Richards, J. S. Mol. Immunol. 2015, 67, 171.
[71] Selman, M. H. J.; Niks, E. H.; Titulaer, M. J.; Verschuuren, J.; Wuhrer, M.; Deelder, A. M. J. Proteome Res. 2011, 10, 143.
[72] Fokkink, W. J. R.; Selman, M. H. J.; Dortland, J. R.; Durmus, B.; Kuitwaard, K.; Huizinga, R.; van Rijs, W.; Tio-Gillen, A. P.; van Doorn, P. A.; Deelder, A. M.; Wuhrer, M.; Jacobs, B. C. J. Proteome Res. 2014, 13, 1722.
[73] Zhang, D.; Chen, B. C.; Wang, Y. M.; Xia, P.; He, C. Y.; Liu, Y. J.; Zhang, R. Q.; Zhang, M.; Li, Z. L. Sci. Rep. 2016, 6, 10.
[74] Tajiri, M.; Ohyama, C.; Wada, Y. Glycobiology 2008, 18, 2.
[75] Shi, Y.; Xu, X.; Fang, M.; Zhang, M.; Li, Y.; Gillespie, B.; Yorke, S.; Yang, N.; McKew, J. C.; Gahl, W. A.; Huizing, M.; Carrillo-Carrasco, N.; Wang, A. Q. J. Chromatogr. B 2015, 1000, 105.
[76] Priego-Capote, F.; Orozco-Solano, M. I.; Calderon-Santiago, M.; de Castro, M. D. L. J. Chromatogr. A 2014, 1346, 88.
[77] Kodar, K.; Stadlmann, J.; Klaamas, K.; Sergeyev, B.; Kurtenkov, O. Glycoconjugate J. 2012, 29, 57.
[78] Balmana, M.; Sarrats, A.; Llop, E.; Barrabes, S.; Saldova, R.; Ferri, M. J.; Figueras, J.; Fort, E.; de Llorens, R.; Rudd, P. M.; Peracaula, R. Clin. Chim. Acta 2015, 442, 56.
[79] Hu, Z.-Y.; Sun, Z.; Zhang, Y.; Wu, R.-A.; Zou, H.-F. Acta Chim. Sinica 2012, 70, 2059(in Chinese). (胡争艳, 孙珍, 张轶, 吴仁安, 邹汉法, 化学学报, 2012, 70, 2059.)
[80] Xiong, Y.; Chen, Y.; Ding, L.; Liu, X.; Ju, H. Analyst 2019, 144, 4545.
[81] Pihikova, D.; Kasak, P.; Kubanikova, P.; Sokol, R.; Tkac, J. Anal. Chim. Acta 2016, 934, 72.
[82] Wu, J.; Xie, X. L.; Liu, Y. S.; He, J. T.; Benitez, R.; Buckanovich, R. J.; Lubman, D. M. J. Proteome Res. 2012, 11, 4541.
[83] Yang, W. H.; Aziz, P. V.; Heithoff, D. M.; Mahan, M. J.; Smith, J. W.; Marth, J. D. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 13657.
文章导航

/