研究论文

壳聚糖/氮掺杂还原氧化石墨烯修饰电极对黄嘌呤的检测及尿酸抑制的研究

  • 宋光捷 ,
  • 武调弟 ,
  • 刘福鑫 ,
  • 张彬雁 ,
  • 刘秀辉
展开
  • 西北师范大学化学化工学院 甘肃省生物电化学与环境分析重点实验室 兰州 730070

收稿日期: 2019-08-26

  网络出版日期: 2019-11-07

基金资助

项目受国家自然科学基金(No.21565021)资助.

Electrochemical Detection of Xanthine and Study for the Inhibition of Uric Acid Based on Chitosan/Nitrogen Doped Reduced Graphene Oxide Modified Electrode

  • Song Guangjie ,
  • Wu Tiaodi ,
  • Liu Fuxin ,
  • Zhang Binyan ,
  • Liu Xiuhui
Expand
  • College of Chemistry and Chemical Engineering, Northwest Normal University, Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, Lanzhou 730070

Received date: 2019-08-26

  Online published: 2019-11-07

Supported by

Project supported by the National Natural Science Foundation of China (No. 21565021).

摘要

用碳热还原法制备氮掺杂还原氧化石墨烯(N-RGO),用壳聚糖(CS)的乙酸溶液作为氮掺杂还原氧化石墨烯(N-RGO)的分散剂,将其修饰在玻碳电极表面,用于检测黄嘌呤(xanthine).该传感器对黄嘌呤展现出优异的电化学响应,线性范围为2.99×10-8~1.07×10-4 mol/L,检测限为9.96×10-9 mol/L(S/N=3).此外,利用循环伏安法(CV)对黄嘌呤电化学行为进行了研究.最后,用电化学的方法研究了非布索坦(Febuxostat)和别嘌呤醇(Allopurinol)两种药物对尿酸生成的抑制.本工作为痛风的诊断和治疗提供了重要的信息.

本文引用格式

宋光捷 , 武调弟 , 刘福鑫 , 张彬雁 , 刘秀辉 . 壳聚糖/氮掺杂还原氧化石墨烯修饰电极对黄嘌呤的检测及尿酸抑制的研究[J]. 化学学报, 2020 , 78(1) : 82 -88 . DOI: 10.6023/A19080313

Abstract

Nitrogen doped reduced graphene oxide (N-RGO) was successfully prepared by carbon thermal reduction method, which annealed graphene oxide (GO) and cyanamide at 900℃. The 0.2% acetic acid solution with chitosan (CS) was used as the dispersant of N-RGO to improve the dispersivity, electronic mass transfer rate, and biocompatibility of N-RGO. The morphology, structure and electrochemical properties of N-RGO and CS/N-RGO were investigated by scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FT-IR), and cyclic voltammetry (CV). FT-IR spectrum indicated graphene oxide (GO) was reduced and N-RGO was successfully prepared. The electrochemical experiments demonstrated that CS/N-RGO possesses large electrochemical effective area, strong adsorptive ability and fast electronic mass transfer rate. Then a novel electrochemical sensor for detection of xanthine was fabricated based on CS/N-RGO modified glassy carbon electrode (CS/N-RGO/GCE). It exhibited good electrochemical response toward the oxidation of xanthine with a linear range covering 2.99×10-8~1.07×10-4 mol/L, and the corresponding detection limit (LOD) of 9.96×10-9 mol/L (S/N=3). In addition, the electrochemical behaviors of xanthine on CS/N-RGO/GCE were explored using cyclic voltammetry (CV), which included the pH effect on the oxidation of xanthine and the effect of scan rate on the peak current and peak potential of xanthine. Usually, uric acid in the body is generated by xanthine under the catalysis of xanthine oxidase (XOR), and high concentration of uric acid can cause gout. The inhibition for the formation of uric acid is the most direct method for the treatment of gout. Hence, the inhibition for the formation of uric acid by febuxostat and allopurinol was researched by electrochemical method, manifesting febuxostat and allopurinol can inhibit the activity of xanthine oxidase, which did not make xanthine generating uric acid. Thus, this work is very meaningful in the field of the diagnosis and treatment of gout.

参考文献

[1] Mohapatra, S.; Kabiraj, P.; Agarwal, T.; Asthana, S.; Annamalai, N.; Arsad, H.; Siddiqui, A. M.; Khursheed, M. H. J. Pharm. Pharm. Sci. 2015, 7, 360.
[2] Martinon, F.; Glimcher, L. H. J. Clin. Invest. 2006, 116, 2073.
[3] Alam, M. M.; Asiri, A. M.; Uddin, M. T.; Islam, M. A.; Rahman, M. M. RSC Adv. 2018, 8, 12562.
[4] Wang, Y.; Tong, L. L. Sens. Actuators, B 2010, 150, 43.
[5] Mandell, B. F. Clev. Clin. J. Med. 2002, 69, 583.
[6] Dincer, H. E.; Dincer, A. P.; Levinson, D. J. Clev. Clin. J. Med. 2002, 69, 594.
[7] Kalimuthu, P.; John, S. A. Talanta 2010, 80, 1686.
[8] Rahman, M. M.; Marwani, H. M.; Algethami, F. K.; Asiri, A. M. New J. Chem. 2017, 41, 6262.
[9] Hou, G. J. Contemp. Med. 2015, 21, 114(in Chinese). (侯国军, 当代医学, 2015, 21, 114.)
[10] Cooper, N.; Khosravan, R.; Erdmann, C.; Fiene, J.; Lee, J. W. J. Chromatogr. B 2006, 837, 1.
[11] Richter, T.; Shultz-Lockyear, L. L.; Oleschuk, R. D.; Bilitewski, U.; Harrison, D. J. Sens. Actuators, B 2002, 81, 369.
[12] Ni, Y. N.; Cao, D. X.; Kokot, S. Anal. Chim. Acta 2007, 588, 131.
[13] Reza, O.; Ali, A.; Zahra, A. Sens. Actuators, B 2013, 188, 621.
[14] Wang, Z. H.; Yu, J. B.; Gui, R. J.; Jin, H.; Xia, Y. Z. Biosens. Bioelectron. 2016, 79, 136.
[15] Li, S. M.; Yang, S. Y.; Wang, Y. S.; Lien, C. H.; Tien, H. W.; Hsiao, S. T.; Liao, W. H.; Tsai, H. P.; Chang, C. L.; Ma, C. C.; Hu, C. C. Carbon 2013, 59, 418.
[16] Guo, H. L.; Su, P.; Kang, X. F.; Ning, S. K. J. Mater. Chem. A 2013, 1, 2248.
[17] Usachov, D.; Vilkov, O.; Gruneis, A.; Haberer, D.; Fedorov, A.; Adamchuk, V. K.; Preobrajenski, A. B.; Dudin, P.; Barinov, A.; Oehzelt, M.; Laubschat, C.; Vyalikh, D. V. Nano Lett. 2011, 11, 5401.
[18] Zhang, Y.; Zhu, J. Y.; Ren, H. B.; Bi, Y. T.; Zhang, L. Chin. J. Chem. 2017, 35, 1069.
[19] Kong, D. Q.; Bi, S.; Wang, Z. H.; Xia, J. F.; Zimney, E. J.; Zhang, F. F. Anal. Chem. 2016, 88, 10667.
[20] Kumar, M. N.; Muzzarelli, R. A.; Muzzarelli, C.; Sashiwa, H.; Domb, A. J. Chem. Rev. 2004, 104, 6017.
[21] Yang, X. M.; Tu, Y. F.; Li, L.; Shang, S. M.; Tao, X. M. ACS Appl. Mater. Inter. 2010, 2, 1707.
[22] Liu, Y. G.; Li, W. M.; Wei, C. B.; Lv, L. L. Chin. J. Chem. 2012, 30, 1601.
[23] Sharma, N.; Sharma, V.; Jain, Y.; Kumari, M.; Gupta, R.; Sharma, S. K.; Sachdev, K. Macromol. Symp. 2017, 376, 1700006.
[24] Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. ACS Nano 2009, 3, 2653.
[25] Gao, H. C.; Xiao, F.; Ching, C. B.; Duan, H. W. ACS Appl. Mater. Inter. 2011, 3, 3049.
[26] Wu, P.; Qian, Y. D.; Du, P.; Zhang, H.; Cai, C. X. J. Mater. Chem. 2012, 22, 6402.
[27] Li, S. J.; He, J. Z.; Zhang, M. J.; Zhang, Q. R.; Lv, X. L. Electrochim. Acta 2013, 102, 58.
[28] Laviron, E. Electroanal. Chem. Inter. Electrochem. 1974, 52, 355.
[29] Li, Y. C.; Feng, S. Q.; Li, S. X.; Zhang, Y. Y.; Zhong, Y. M. Sens. Actuators, B 2014, 190, 999.
[30] Li, J. H.; Kuang, D. Z.; Feng, Y. L.; Zhang, F. X.; Xu, Z. F.; Liu, M. Q.; Wang, D. P. Biosens. Bioelectron. 2013, 42, 198.
[31] Wen, Y. P.; Chang, J.; Xu, L. J.; Liao, X. N.; Bai, L.; Lan, Y. D.; Li, M. F. J. Electroanal. Chem. 2017, 805, 159.
[32] Steel, A. B.; Herne, T. M.; Tarlov, M. J. Anal. Chem. 1998, 70, 4670.
[33] Dincer, H. E.; Dincer, A. P.; Levinson, D. J. Clev. Clin. J. Med. 2002, 69, 594.
[34] Mandell, B. F. Clev. Clin. J. Med. 2002, 69, 583.
[35] Maiuolo, J.; Oppedisano, F.; Gratteri, S.; Muscoli, C.; Mollace, V. Int. J. Cardiol. 2016, 213, 8.
[36] Wilson, L.; Saseen, J. J. Pharmacotherapy 2016, 36, 906.
[37] Okamoto, K.; Eger, B. T.; Nishino, T.; Kondo, S.; Pai, E. F.; Nishino, T. J. Biol. Chem. 2003, 278, 48.
[38] Takano, Y.; Hase, K.; Horiuchi, H. Life Sci. 2005, 76, 35.
[39] Schumacher, H. R. Expert Opin. Invest. Drugs 2005, 14, 893.
文章导航

/