研究论文

快速合成Bi@ZIF-8复合纳米材料用于近红外二区光热治疗以及可控药物释放

  • 王英美 ,
  • 朱道明 ,
  • 杨阳 ,
  • 张珂 ,
  • 张修珂 ,
  • 吕明珊 ,
  • 胡力 ,
  • 丁帅杰 ,
  • 王亮
展开
  • a 新疆大学生命科学与技术学院 乌鲁木齐 830046;
    b 武汉大学物理科学与技术学院 武汉 430000

收稿日期: 2019-10-16

  网络出版日期: 2020-01-17

Rapid Synthesis of Bi@ZIF-8 Composite Nanomaterials for the Second Near-infrarad Window Photothermal Therapy and Controlled Drug Release

  • Wang Yingmei ,
  • Zhu Daoming ,
  • Yang Yang ,
  • Zhang Ke ,
  • Zhang Xiuke ,
  • Lv Mingshan ,
  • Hu Li ,
  • Ding Shuaijie ,
  • Wang Liang
Expand
  • a College of Life Science and Technology, Xinjiang University, Urumqi 830046;
    b School of Physical and Technology, Wuhan University, Wuhan 430000

Received date: 2019-10-16

  Online published: 2020-01-17

摘要

随着纳米技术的发展及其向医学领域的渗透,纳米技术为肿瘤的治疗开辟了新的途径,构建有效的纳米载体体系对于肿瘤的治疗具有十分重要的意义.本工作报道了一种铋纳米粒子嵌入ZIF-8的纳米材料Bi@ZIF-8@TPZ(BZT),联合近红外二区(NIR-II)的光热治疗与化疗,达到了良好的治疗效果.BZT纳米材料高效地装载了抗癌药物替拉扎明(TPZ),同时嵌入的铋纳米点使得该纳米材料具有NIR-II光热的能力.因ZIF-8具有良好的pH响应能力,所以在酸性和光照条件下能实现药物的可控释放,实现了化疗与NIR-II光热治疗的协同治疗,使得BZT纳米材料在临床上具有很高的应用价值.

本文引用格式

王英美 , 朱道明 , 杨阳 , 张珂 , 张修珂 , 吕明珊 , 胡力 , 丁帅杰 , 王亮 . 快速合成Bi@ZIF-8复合纳米材料用于近红外二区光热治疗以及可控药物释放[J]. 化学学报, 2020 , 78(1) : 76 -81 . DOI: 10.6023/A19100371

Abstract

With the development of nanotechnology and its penetration into the field of medicine, nanotechnology has opened a new way for the treatment of tumors. Building an effective nanocarrier system is significant for the treatment of tumors. Compared with the traditional drug therapy, the drug which uses the nanomaterial as the carrier can greatly improve the treatment effect of the medicine and the side effect caused by the medicine in the in-vivo circulation process is extremely reduced simultaneously. At the same time, due to the protective effect of the carrier, the stability of the drug can be improved obviously. In this paper, we report a composite nanomaterial Bi@ZIF-8@TPZ (BZT) which is the formation of Bi nanoparticles and tirapazamine (TPZ) embedded in ZIF-8, this novel nanomaterial combines chemotherapy with photothermal therapy in the second near-infrared region (NIR-II), and achieves a good therapeutic effect. First, we prepared a Bi@ZIF-8 (BZ) nanoparticle by a simple one-step reduction method. The morphology and microstructure of the nanoparticle were analyzed by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Next, the anticancer drug tirapazamine (TPZ) was efficiently loaded into the BZ nanomaterial by physical mixing. The UV absorption spectrum proved that it could be successfully loaded, and the loading efficiency (LE) was 30%. Furthermore, the embedded Bi nanoparticles make the composite nanomaterials have good photothermal properties in NIR-II area, and the photothermal conversion efficiency is about 31.75%. Because ZIF-8 has a good pH response ability, the material can achieve controllable drug release under weak acid (pH=5.5) and light conditions. In vitro results show that BZ loaded with the chemotherapeutic drug TPZ can achieve a good therapeutic effect. The composite materials reported in this article realize the synergistic treatment of chemotherapy and NIR-II photothermal treatment, which makes it highly clinically useful.

参考文献

[1] Zhang, X. J.; Li, W. X. Chin. J. Pharm. 2016, 47, 1065(in Chinese). (张小娟, 李文星, 中国医药工业杂志, 2016, 47, 1065.)
[2] Melancon, M. P.; Zhou, M.; Li, C. Acc. Chem. Res. 2011, 44, 947.
[3] Yoo, D.; Lee, J.-H.; Shin, T.-H.; Cheon, J. Acc. Chem. Res. 2011, 44, 863.
[4] Ferrari, M. Nat. Rev. Cancer 2005, 5, 161.
[5] Lim, E.-K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y.-M.; Lee, K. Chem. Rev. 2015, 115, 327.
[6] Feng, T.; Xue, Z. B.; Yi, J. J.; Jiang, X.; Feng, Y. Q.; Meng, S. X. Chin. J. Org. Chem. 2019, 39, 1891(in Chinese). (冯彤, 薛中博, 尹娟娟, 蒋旭, 冯亚青, 孟舒献, 有机化学, 2019, 39, 1891.)
[7] Sherlock, S. P.; Tabakman, S. M.; Xie, L.; Dai, H. ACS Nano 2011, 5, 1505.
[8] Feng, L.; Li, K.; Shi, X.; Gao, M.; Liu, J.; Liu, Z. Adv. Healthcare Mater. 2014, 3, 1261.
[9] Feng, L.; Yang, X.; Shi, X.; Tan, X.; Peng, R.; Wang, J.; Liu, Z. Small 2013, 9, 1989.
[10] Yu, X. J.; Li, A.; Zhao, C. Z.; Yang, K.; Chen, X. Y.; Li, W. W. ACS Nano 2017, 11, 3990.
[11] Liu, J.; Zheng, X.; Yan, L.; Zhou, L.; Tian, G.; Yin, W.; Wang, L.; Liu, Y.; Hu, Z.; Gu, Z.; Chen, C.; Zhao, Y. ACS Nano 2015, 9, 696.
[12] Zha, Z.; Yue, X.; Ren, Q.; Dai, Z. Adv. Mater. 2013, 25, 777.
[13] Zhang, Z.; Wang, J.; Chen, C. Adv. Mater. 2013, 25, 3869.
[14] Lovell, J. F.; Jin, C. S.; Huynh, E.; Jin, H.; Kim, C.; Rubinstein, J. L.; Chan, W. C. W.; Cao, W.; Wang, L. V.; Zheng, G. Nat. Mater. 2011, 10, 324.
[15] Zhang, Z.; Wang, J.; Nie, X.; Wen, T.; Ji, Y.; Wu, X.; Zhao, Y.; Chen, C. J. Am. Chem. Soc. 2014, 136, 7317.
[16] Orecchioni, M.; Cabizza, R.; Bianco, A.; Delogu, L. G. Theranostics. 2015, 5, 710.
[17] Yang, K.; Feng, L.; Shi, X.; Liu, Z. Chem. Soc. Rev. 2013, 42, 530.
[18] Wu, Z.-C.; Li, W.-P.; Luo, C.-H.; Su, C.-H.; Yeh, C.-S. Adv. Funct. Mater. 2015, 25, 6527.
[19] Chen, Z.; Wang, Q.; Wang, H.; Zhang, L.; Song, G.; Song, L.; Hu, J.; Wang, H.; Liu, J.; Zhu, M.; Zhao, D. Adv. Mater. 2013, 25, 2095.
[20] Guo, C.; Yu, H.; Feng, B.; Gao, W.; Yan, M.; Zhang, Z.; Li, Y.; Liu, S. Biomaterials 2015, 52, 407.
[21] Li, A.; Li, X.; Yu, X.; Li, W.; Zhao, R.; An, X.; Cui, D.; Chen, X.; Li, W. Biomaterials 2017, 112, 164.
[22] Hu, K.-W.; Liu, T.-M.; Chung, K.-Y.; Huang, K.-S.; Hsieh, C.-T.; Sun, C.-K.; Yeh, C.-S. J. Am. Chem. Soc. 2009, 131, 14186.
[23] Ding, X.; Liow, C. H.; Zhang, M.; Huang, R.; Li, C.; Shen, H.; Liu, M.; Zou, Y.; Gao, N.; Zhang, Z.; Li, Y.; Wang, Q.; Li, S.; Jiang, J. J. Am. Chem. Soc. 2014, 136, 15684.
[24] Manikandan, M.; Hasan, N.; Wu, H.-F. Biomaterials 2013, 34, 5833.
[25] Li, L.; Liu, Y.; Hao, P.; Wang, Z.; Fu, L.; Ma, Z.; Zhou, J. Bio-materials 2015, 41, 132.
[26] Comin, A.; Manna, L. Chem. Soc. Rev. 2014, 43, 3957.
[27] Li, W.; Rong, P.; Yang, K.; Huang, P.; Sun, K.; Chen, X. Biomaterials 2015, 45, 18.
[28] McMahon, J. M.; Schatz, G. C.; Gray, S. K. Phys. Chem. Chem. Phys. 2013, 15, 5415.
[29] Tediosi, R.; Armitage, N. P.; Giannini, E.; Marel, D. V. D. Phys. Rev. Lett. 2007, 99, 016406.
[30] Li, B.; Ye, K.; Zhang, Y.; Qin, J.; Zou, R.; Xu, K.; Huang, X.; Xiao, Z.; Zhang, W.; Lu, X.; Hu, J. Adv. Mater. 2015, 27, 1339.
[31] Lusic, H.; Grinstaff, M. W. Chem. Rev. 2013, 113, 1641.
[32] Swy, E. R.; Schwartz-Duval, A. S.; Shuboni, D. D.; Latourette, M. T.; Mallet, C. L.; Parys, M.; Cormode, D. P.; Shapiro, E. M. Nanoscale 2014, 6, 13104.
[33] Zhang, L.-L.; Tang, A.-Q.; Wang, Z.-H.; Zhang, M.-X.; Xu, L.; Zhu, L.-P. J. Funct. Polym. 2018, 31, 546(in Chinese). (张蕾蕾, 唐安琪, 王章慧, 张梦晓, 徐丽, 朱利平, 功能高分子学报, 2018, 31, 546.)
[34] Lin, H.; Gao, S.-S.; Dai, C.; Chen, Y.; Shi, J.-L. J. Am. Chem. Soc. 2017, 139, 16235.
文章导航

/